Advanced Calculus and Complex Variables (solution hints)
August 2021
For full credit, support your answers with appropriate explanations.
There are five problems, each worth 20 points.

1. (20 points) Let Q be the set of rational numbers. Give an example of a function $f : [0, 1] \to \mathbb{R}$ that satisfies the following two criteria:
 (a) f must be continuous at $x \in [0, 1] - Q$.
 (b) f must be discontinuous at $x \in [0, 1] \cap Q$.

 Explain why f has the above two properties. Informal explanations will get full credit.

Solution Let q_1, q_2, \ldots be an enumeration of rationals in $[0, 1]$. Define

$$f(x) = \sum_{\{n|q_n \leq x\}} \frac{1}{2^n}$$

for $x \in [0, 1]$. Then f has the above two properties.

2. A function $f : [0, 1] \to \mathbb{R}$ is said to be lower semicontinuous if for every sequence x_1, x_2, \ldots in $[0, 1]$ with
 $$x_* = \lim_{n \to \infty} x_n$$
 we also have
 $$f(x_*) \leq \liminf_{n \to \infty} f(x_n).$$

 The sequence of values
 $$g_n = \inf \{f(x_n), f(x_{n+1}), \ldots\}$$
 is obviously increasing and therefore has a limit as $n \to \infty$ (the limit can be finite or $+\infty$). The limit of g_1, g_2, \ldots is by definition $\liminf_{n \to \infty} f(x_n)$.

 (a) (10 points) If $f : [0, 1] \to \mathbb{R}$ is a lower semicontinuous function, prove that it attains its infimum. That means there exists $x_* \in [0, 1]$ such that
 $$f(x) \geq f(x_*)$$
 for all $x \in [0, 1]$.

 (b) (10 points) Give an example of an $f : [0, 1] \to \mathbb{R}$ that is lower semicontinuous but does not attain its supremum.

Solution: (a) Suppose $m = \inf \{f(x)|x \in [0, 1]\}$. There must exist a sequence x_1, x_2, \ldots such that $\lim_{n \to \infty} f(x_n) = m$. By the Bolzano-W property and by taking a subsequence if necessary, we may assume that $\lim_{n \to \infty} x_n = x_*$. It then follows that $f(x_*) \leq m$ from the definition of lower semicontinuity and because m is the inf we must have $m = f(x_*)$. This is one of many possible proofs. (b) Define $f(x) = x$ for $0 < x < 1$ and $f(0) = f(1) = -1$. The supremum, which is 1, is not attained by this lower-semi function.
3. Sketch closed and oriented curves γ in \mathbb{C} such that the value of

$$\frac{1}{2\pi i} \int_{\gamma} \left(\frac{1}{z-1} + \frac{1}{z-2} \right) \, dz$$

is 0, 1, and -2, respectively.

4. The function $f(z) = \sqrt{1-z^2}$ has branch points at $z = \pm 1$ but nowhere else. In particular, $z = \infty$ is not a branch point. Thus, we may choose the branch cut to be the interval $(-1, 1)$ in the real line and specify the branch by requiring $f(i) = +\sqrt{2}$.

(a) (5 points) For $f(z)$ as specified above, is $f(z)$ positive or negative “slightly above” the branch cut $(-1, 1)$. Here “slightly above” refers to the limiting value of $f(z)$ as a point on the branch cut is approached from above.

(b) (15 points) Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{dz}{\sqrt{1-z^2}},$$

where it is assumed that the path from $-\infty$ to ∞ is along the real line and slightly above the branch cut. The branch of $f(z) = \sqrt{1-z^2}$ is as specified above.

Solution
(a) $f(z)$ is positive slightly above the branch cut. This may be proved using a continuity argument by first letting z vary from i to 0 and then above the branch cut. (b) First argue that $f(z) \sim -iz$ for $|z|$ large as follows. For large iy, $y > 0$, a continuity argument from $z = i$ upwards shows that $f(iy) \sim y = -iz$. Again by continuity, we must have $f(z) \sim -iz$ for all z with large $|z|$. The value of the integral can then be shown to be equal to

$$\int_{\gamma} \frac{1}{-iz} \, dz,$$

where γ is the path Re^{it} with $t \in [0, \pi]$ and counter-clockwise, and in the limit $R \to \infty$. Thus the integral evaluates to π.

5. Consider the function $f(z) = (z - \frac{\pi}{2}) \sin \pi z$.

(a) (10 points) Evaluate the integral

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} \, dz,$$

with γ being the close curve $|z| = 2\pi$ oriented counter-clockwise.
(b) (10 points) Let \(\gamma_n \) be the close curve \(|z| = n + \frac{1}{2} \) oriented counter-clockwise and define

\[
I_n = \frac{1}{2\pi i} \int_{\gamma_n} \frac{z^2 f'(z)}{f(z)} \, dz.
\]

Evaluate the limit

\[
\lim_{n \to \infty} \frac{I_n}{n^3}.
\]

Above \(n \in \mathbb{Z}^+ \) is assumed.

Solution (a) \(z = 0, \frac{\pi}{2}, \pm 1, \ldots, \pm 6 \) are the roots of \(f(z) = 0 \) inside \(\gamma \). Thus the answer is 14. (b) First argue that

\[
I_n = \frac{\pi^2}{4} + 2(1^2 + \cdots + n^2)
\]

using residues and the argument principle. The limit must then be equal to \(\frac{2}{3} \).