Statistics of the Character Table of S_{n}

Atharva Kulkarni, Arnav Shah, Tony Zhang

Goal
Compute the character table of S_{n}, and study its various statistics such as the density of zeros, the congruence property of character values, and the equidistribution phenomenon modulo prime numbers in some specific column.

- Characters form an orthonormal basis for the class functions of a group, the character tables help us classify and understand the irreducible representations of the group.
They capture the different behaviors of different conjugacy classes of S_{n} just like "periodic table" for symmetric groups.

2. Background

- All the entries in the character tables of S_{n} are integers.
- In 2017, Miller [1] calculated the entries of all the character tables of S_{n} for all $n \leq 38$. - Based on his calculations, various observations were made, including that the density of even entries seemed to tend to 1 . This was later proved by Prof. Sarah Peluse [2]. - Miller then conjectured that, even more generally, for any fixed prime power p^{k}, almost every entry of the character table of S_{n} is a multiple of p^{k} as n goes to infinity. This was again proved by Prof. Sarah Peluse in [3].
-The rows and columns of the character table of S_{n} can be indexed by partitions of n. For more details, please see [4]

Definition. [4] A partition of a positive integer n is a sequence of positive integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)$ satisfying $\lambda_{1}>\lambda_{2} \geq \cdots \geq \lambda_{l}>0$ and $n=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{l}$. Write $\lambda \vdash n$ to denote that λ is a partition of n.
-The irreducible representations of S_{n} and conjugacy classes of S_{n} have one-to-one co respondence with the partitions of n, which can be described by the Young diagrams.

Definition. [4]

A Young diagram is a finite collection of boxes arranged in left-justified rows, with the row sizes weakly decreasing.

- The Young diagram associated to the partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{l}\right)$ is the one that has I rows, and λ_{i} boxes on the ith row.
-For instance, the Young diagram corresponding to the partition $(3,1) \vdash 4$ is

Theorem 1: (Frobenius Formula)
Given two integer partitions $\lambda, \mu \vdash n$, let χ_{μ}^{λ} denote the character value of characte corresponding to λ evaluated at conjugacy class

- $\Delta(x)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$
- $P_{\mu}(x)=P_{\mu_{1}}(x) P_{\mu_{2}}(x) \cdots P_{\mu_{n}}(x), P_{0}(x)=1, P_{k}(x)=x_{1}^{k}+x_{2}^{k}+\cdots x_{n}^{k}$ for $k \geq 1$
- $\chi_{\mu}^{\lambda}=$ coeff. of $x_{1}^{n+\lambda_{1}-1} x_{2}^{n+\lambda_{2}-2} \cdots x_{n}^{\lambda_{l}}$ in $\Delta(x) P_{\mu}(x$

Theorem 2: (Murnaghan-Nakayama Rule)

- $\chi_{\mu}^{\lambda}=\sum_{\xi \in \operatorname{bs}\left(\lambda, \mu_{1}\right)}(-1)^{h t(\xi)} \chi_{\mu \backslash \lambda \mu_{1}}^{\lambda \mid \xi}$
- Base case: $\chi_{0}^{()}=$
-The summation ranges over all the border strip ξ that have μ_{1} boxes from λ whose removal leaves a valid Young diagram
- $\mu \backslash \mu_{1}=$ the partition obtained by removing the first element μ_{1} from μ
- $h t(\xi)=$ the height of the border strip $=$ the number of rows that it occupies minus 1.

S_{12} (values truncated within [-25, 25])

3. Results

3.1 Are most entries 0

- We can see in Figure 2 that most entries are in a small range ($[-2,2]$ in this this true for all character tables?
The density of zeros seems to be creasing when n is large. However, it remains unknown whether it converges to 0 or some other value.

3.2 Staircase Partition

Generally, most values in a column tend to be small when there are no repeating parts in that column's partition.

The staircase partition, i.e. partition of he form $\rho_{n}=(n, n-1, \ldots, 1)$, have no epeating parts. Are most entries 0 ?
As mentioned earlier, the density of even entries in the whole character tables approaches 1 . However, is this

For staircase partitions, turns out that the proportion of even entries tends to $\frac{1}{2}$ according to the statistics

 umn

Even Density in Staircase Partition Col umn

Conjecture
Let p be a prime number. Then: $\lim _{k \rightarrow \infty} \frac{\#\left\{\mu \vdash\binom{k+1}{+1}: \chi_{\rho k}^{\mu}=l(\bmod p)\right\}}{\#\left\{\mu: \mu \vdash\binom{k+1}{2}\right\}} \rightarrow \frac{1}{p}, \forall 0 \leq l \leq p-1$

References

[1] Alexander R. Miller. Note on parity and the irreducible characters of the symmetric group, 2017.
[2] Sarah Peluse. On even entries in the character table of the symmetric group, 2020
[3] Sarah Peluse and Kannan Soundararajan. Almost all entries in the character table of the symmetric group are multiples of any given prime, 2023.
[4] Yufei Zhao. Young tableaux and the representations of the symmetric group. 012008.

