

1. Introduction

Goal

Compute the character table of S_n , and study its various statistics such as the density of zeros, the congruence property of character values, and the equidistribution phenomenon modulo prime numbers in some specific column.

- Characters form an orthonormal basis for the class functions of a group, the character tables help us classify and understand the irreducible representations of the group.
- They capture the different behaviors of different conjugacy classes of S_n , just like a "periodic table" for symmetric groups.

2. Background

- All the entries in the character tables of S_n are integers.
- In 2017, Miller [1] calculated the entries of all the character tables of S_n for all $n \leq 38$. • Based on his calculations, various observations were made, including that the density
- of even entries seemed to tend to 1. This was later proved by Prof. Sarah Peluse [2].
- Miller then conjectured that, even more generally, for any fixed prime power p^k , almost every entry of the character table of S_n is a multiple of p^k as n goes to infinity. This was again proved by Prof. Sarah Peluse in [3].
- The rows and columns of the character table of S_n can be indexed by partitions of n. For more details, please see [4].

Definition. [4] A *partition* of a positive integer n is a sequence of positive integers $\lambda = (\lambda_1, \lambda_2, \cdots, \lambda_l)$ satisfying $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_l > 0$ and $n = \lambda_1 + \lambda_2 + \cdots + \lambda_l$. Write $\lambda \vdash n$ to denote that λ is a partition of n.

• The irreducible representations of S_n and conjugacy classes of S_n have one-to-one correspondence with the partitions of n, which can be described by the Young diagrams.

Definition. [4]

- A Young diagram is a finite collection of boxes arranged in left-justified rows, with the row sizes weakly decreasing.
- The Young diagram associated to the partition $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ is the one that has *l* rows, and λ_i boxes on the *i*th row.
- For instance, the Young diagram corresponding to the partition $(3,1) \vdash 4$ is

Theorem 1: (Frobenius Formula)

- Given two integer partitions $\lambda, \mu \vdash n$, let χ^{λ}_{μ} denote the character value of character corresponding to λ evaluated at conjugacy class μ
- $\Delta(x) = \prod_{1 \le i < j \le n} (x_i x_j)$
- $P_{\mu}(x) = P_{\mu_1}(x)P_{\mu_2}(x)\cdots P_{\mu_n}(x)$, $P_0(x) = 1$, $P_k(x) = x_1^k + x_2^k + \cdots + x_n^k$ for $k \ge 1$
- χ_{μ}^{λ} = coeff. of $x_1^{n+\lambda_1-1}x_2^{n+\lambda_2-2}\cdots x_n^{\lambda_l}$ in $\Delta(x)P_{\mu}(x)$

Statistics of the Character Table of S_n

Atharva Kulkarni, Arnav Shah, Tony Zhang Mentors: Prof. Sarah Peluse, Karthik Ganapathy

Laboratory of Geometry at Michigan

Theorem 2: (Murnaghan-Nakayama Rule)

•
$$\chi^{\lambda}_{\mu} = \sum_{\xi \in \mathbf{bs}(\lambda,\mu_1)} (-1)^{ht(\xi)} \chi^{\lambda \setminus \xi}_{\mu \setminus \mu_1}$$

- Base case: $\chi_{\Omega}^{()} = 1$
- The summation ranges over all the border strip ξ that have μ_1 boxes from λ whose removal leaves a valid Young diagram
- $\mu \setminus \mu_1$ = the partition obtained by removing the first element μ_1 from μ .

- this true for all character tables?
- it remains unknown whether it converges to 0 or some other value.

3.2 Staircase Partitions

- repeating parts. Are most entries 0?
- true for specific columns?
- $\frac{1}{2}$ according to the statistics.

- group, 2017.
- the symmetric group are multiples of any given prime, 2023.

References

[1] Alexander R. Miller. Note on parity and the irreducible characters of the symmetric

[2] Sarah Peluse. On even entries in the character table of the symmetric group, 2020.

[3] Sarah Peluse and Kannan Soundararajan. Almost all entries in the character table of

[4] Yufei Zhao. Young tableaux and the representations of the symmetric group. 01 2008.