
School Admission When Students Have Diversity Preferences
1

Yu Shi

University of Michigan

Nov. 24st, 2023

Abstract

Schools and students care about the diversity of the school's student

population. This paper diverges from the current literature and incorpo-

rates students' preferences for diversity into the School Admission model.

The paper focuses on investigating the existence of stable matching in such

a School Admission model. Speci�cally, I illustrate a school admission

model in which students have preferences not only over schools but also

over schools' student populations. This model extends the classical hedo-

nic game framework by incorporating schools and capacity constraints into

the coalition structures. The concepts of individual and group stability are

rede�ned. In this case, the conditions of additive separability and symme-

try, su�cient for ensuring the existence of individually stable matching in

classical hedonic games, are no longer su�cient in this context. Addition-

ally, I introduce the non-rival property, which, in conjunction with the top

coalition property, ensures the existence of a unique group stable match-

ing under strict preferences. Furthermore, A strategyproof algorithm that

yields the unique group stable matching is proposed.

1This paper is advised by Professor Tilman Börgers
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1 Introduction

This paper investigates the existence of stable matching under a School Ad-

mission model where students care about diversity at schools. As our society

becomes more diverse and inclusive, schools have also shown a growing interest

in fostering diversity. In the �eld of economic research, there have also been

attempts to model such interest of schools into the school admission model.

For example, Abdulkadiroglu et al. (2002) introduced a school choice model in

which schools have choice functions that take both the diversity and ranking

of students into account. However, there haven't been attempts to incorporate

students' preferences over the diversity of schools' student populations into the

school admission model. In reality, schools care about building a more diverse

educational environment because they know that students bene�t from such

learning environments. Therefore, it's unreasonable for schools to be the only

agents caring about diversity. This paper aims to construct a school admission

model where students care about the diversity of schools.

There are various ways in which I can account for students' preferences for

diversity. For example, it's possible to calculate a �diversity index� for schools

and incorporate that into students' preferences. Taking such an approach might

mean that I have to make students' preferences lexicographic. In this paper,

I decided to take a more general approach. I simply consider the case where

students have preferences over schools and subsets of students in that school.

This approach makes fewer assumptions about what kind of �diversity� does

students care about (Race, ethnicity, or gender, etc.) because it allows for

preference over any characteristic of other students.

This paper begins by introducing the framework of the school admission

model. In classical hedonic games, coalitions are formed between players who

only care about the members of their coalition. In section 2, I extend the
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classical hedonic game model to the school admission context by incorporating

schools and capacity constraints into the coalitions. Speci�cally, there has to be

a school in each coalition of students, and the size of the coalition is constrained

by the capacity of the school. I adopt the two notions of stability for classical

hedonic games, individual stability and core stability, to the case of the school

admission model. In section 3, I rede�ne individual stability to account for the

size constraint of coalitions. I show that the two su�cient conditions for indi-

vidual stability in classical hedonic games, additive separability and symmetry,

are no longer su�cient. In section 4, I replace core stability with group stability,

which is also about whether a group of agents can block. I show that the top

coalition property, which guarantees the existence of core stable matching in

hedonic games, no longer guarantees the existence of group stable matchings. I

introduce a non-rival property, which, together with the top coalition property,

ensures the existence of a unique group stable matching when preferences are

strict. In section 5, a strategyproof algorithm that produces the unique group

stable matching is presented.

2 Hedonic model where only students have pref-

erence

A hedonic game is a class of games where the players are matched into disjoint

groups within themselves, and the preferences of the players only depend on the

other members of their group. Our model is an extension of the classical hedonic

game, and I adopted some frameworks of classical hedonic games from Bogo-

molnaia et al.(2002) paper: �The Stability of Hedonic Coalition Structures.�

Hedonic game models have a wide range of applications in economics, computer

science, and other �elds. Perhaps the most representative application is in the
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formation of societies or political groups. The players want to be matched into

a coalition where members have similar political beliefs compared to themselves

because the joint opinions of members of the party determine the political view

of the party. Consequently, players only care about people who are in the

same group as them (Bogomolnaia 2002). For the situation where students care

about the diversity of schools in a school admission model, I want to consider

the school admission problem under the framework of hedonic games. I'm inter-

ested in a hedonic game model where the students have preferences over both

the schools and their peers at that school in order to address students` concerns

about diversity.

The model of such a hedonic game contains a set of studentsN = {1, 2, 3..., n}

where n ∈ N. I denote the set of schools as the set S= {s1, s2, ...sk} where

k ∈ N .I divide the set N ∪ S into k + 1 mutually disjoint groups . k groups

have to contain exactly one school. These are the groups of students who are

matched to schools. The capacity of school si is denoted by ci, ci ∈ N, and

the capacity of the school has to be weakly greater than the number of stu-

dents in that school. There is exactly one group that contains no school. This

group contain students who are not assigned to any school in the matching.

Without loss of generality, I assume that students who are in this group don't

care about other members in the group because they are not even in school.

Therefore, for every agent n ∈ N , being in the group {Nk+1} is considered

as {n} in their preferences.Note that this group can be an empty set when

everyone is matched to a school. Denote π as a coalition structure, π is a set

that contains {{s1, N1}, {s2, N2}, ...{sk, Nk}, {Nk+1}}.I have
⋃l

n=1 Nn = N and

∀n,m ≤ l, s.t n ̸= m,Nn∩Nm = Ø. De�ne π(n) where n ∈ N as all elements of

the coalition that n is in, including himself. Each agent n ∈ N has a preference

≿n over {n} and all possible sets {si, V } ∀i ∈ {1, 2...k}, V ⊆ N, s.t n ∈ V.I
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denote the set of all possible alternatives for agent n as Sn = {{s, V } : s ∈

S, V ⊆ N, s.t n ∈ V.}.

Two major di�erences exist between the school admission model and a clas-

sical hedonic game model. It ultimately comes from the addition of schools.

Firstly, in classical hedonic games, agents only have preference over groups that

are formed within themselves. However, in the school admission model, the

students not only have preferences over the group of students they are matched

with but also care about what schools their coalition is in. Moreover, in classical

hedonic games, there are no constraints to the sizes of the coalitions. However,

in the school admission model, the size of coalitions is constrained by the schools

they are matched to. For example, if a school has a capacity of three students,

then the coalition formed in that school can contain at most three students.

These di�erences in the model framework necessitate modi�cations to the clas-

sical notions of stability for their application in the school admission model.

3 Individual Stability

Given that our model also falls within the framework of hedonic games, it's

desirable that I extend the existing notions of stabilities to the context of our

model. For convenience, I want to de�ne the set of open coalitions.

De�nition 1. For any coalition structure π, de�ne the set of open coalitions

Oπ ⊆ π, where Oπ = {x ∈ π : ∃si ∈ x,where si ∈ S, and |x\{si}| < ci} ∪ {y ∈

π : ∄si ∈ x,where si ∈ S}. This set Oπis basically all schools that are not at

full capacity and the set of students who are not matched to any schools. Oc
π

denotes the complement of Oπ.

Firstly, I consider the cases where only one agent is blocking. In classical

hedonic games, a matching is individually stable as long as it doesn't have any
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agent i, who wants to deviate from his current coalition to a coalition where

he is welcomed. This means that everyone in the matching that he deviates to

must be weakly better o�. If I follow that exact framework, a student i could

block to deviate to another coalition if every student is weakly better o� when

he joins. If the coalition is open, the situation is trivial and identical to that

of a classical hedonic game. However, if the coalition is not open, following the

same de�nition means that a student could only block to deviate to a non-open

coalition if there is some student j in that coalition who he could replace so

that both of them are better o�. The complication comes from caring about the

student who is expelled from the coalition. If I want to know whether he is better

o�, I need to know his new matching after he is expelled. However, it's unclear

what will happen to him because I don't have any speci�cations for how student

j should deviate, and even if I allow him to self-select into the coalition that he

most prefers, I need to consider whether I care about the preferences of people

in that coalition. If I don't consider the preferences of people in that coalition, it

seems like I'm contradicting my de�nition of blocking groups. Initially, I allow

student i to block only if everyone in the new coalition is weakly better o�, but

this requirement does not apply to agent j. If I do require that student j moves

to a coalition in which all students in that coalition are weakly better o�, the

de�nition of blocking group coincides with the de�nition of pareto improvement

as every agent is better o� through i's deviation.

Therefore, to avoid such complications, I could either just not allow a stu-

dent to deviate to a coalition that is non-open, or I could not care about the

student j who is expelled. If I only allow a student to deviate to an open coali-

tion, the de�nition of stability becomes rather useless for coalition structures

in which all schools are at full capacity. Consider any coalition structure where

all schools are at full capacity. In this scenario, the coalitions will be stable as
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long as everyone prefers their current coalition to disenrolling from school. Any

arbitrary matching that matches students randomly to schools so that every

school is at full capacity will be stable. Consequently, I have arrived at the

plausible de�nition of blocking groups for individual stability where I don't care

about the student who is expelled.

De�nition 2. A matching π is individually stable if and only if

1) there doesn't exist any agent n s.t n ∈ N, and a coalition s ∈ Oπ s.t n /∈

s, s ∪ {n} ≻n π(n), and ∀m ∈ s ∩N, s ∪ {n} ≿m s.

and 2)there doesn't exist any agent n s.t n ∈ N, and a coalition s ∈ Oc
π s.t n /∈

s and ∃p ∈ s ∩ N, (s\{p}) ∪ {n} ≻n π(n), and ∀m ∈ (s\{p}) ∩ N, (s\{p}) ∪

{n} ≿m s.

A blocking agent n under individual stability is a student who either wants

to go to another school or disenroll from school because he will be strictly better

o�. If he is going to a school that is not at full capacity, it must be that other

students in his new school are not worse o�. If the school he wants to go to

is at full capacity, there has to be a student p in the school who can be kicked

out, and agent i can take his seat so that everyone else in that school is weakly

better o�.

For classical hedonic games, Bogomolnaia and Jackson(2002, Proposition 2)

proved that symmetry and additive separability of the preferences ensure the

existence of individually stable matchings. However, their proof doesn't apply to

our school admission model. To prove this, I want to �rst de�ne the restrictions

that they imposed.

De�nition 3. A player i's preference ≿i is additively separable if there exists

a utility function for all students i ∈ N such that ui : N ∪ S → R.∀j ∈ N, ui(j)

represents the utility that agent i gain from being in the same coalition as j.∀k ∈

S, ui(k) represents the utility that agent i gain from being in school k. (s, t) ∈≿i,
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i�
∑

j∈s ui(j) ≥
∑

j∈t ui(j). Without loss of generality, ui(i) = 0.

In the context of our model, this means that a student assigns a speci�c

utility to being in the same matching with each of the other agents. He also

gains a speci�c utility from being in each of the schools. An implicit assumption

is that these utilities are also independent of each other because the utility of

i for being in the same matching with any agent j is only a function of j. The

preference of any student can be represented as a sum of the utility that he gains

from all elements of his coalition which could contain students and a school.

De�nition 4. A set of additively separable preferences ≿= {≿i: i ∈ N} satisfy

symmetry i� ∀i, j ∈ N, ui(j) = uj(i).

Symmetry requires that for any pair of students i, j, the utility that i gains

from having j in his matching is equal to the utility that j gains from having i

in his matching.

Lemma 1. For the school admission model, additive separability and symmetry

do not guarantee the existence of an individually stable matching.

Proof. To see that additive separability and symmetry don't ensure the exis-

tence of individually stable matchings, consider an example where there are two

schools {A,B} and three students {1, 2, 3}. The capacity of school A is 2 and

the capacity of school B is 1. Their preference pro�les are described as below:

≿1: {1, 2, A} ∼ {1, 3, A} ≻ {1, A} ≻ {1, B} ∼ {1}

≿2: {1, 2, A} ≻ {2, A} ∼ {2, 3, A} ≻ {2, B} ∼ {2}

≿3: {1, 3, A} ≻ {3, A} ∼ {2, 3, A} ≻ {3, B} ∼ {3}

This preference is additively separable and symmetric. It can be represented

by utility indexes uij s.t uij = uji. For example, I can have u12 = u13 = 1,u23 =

0,u1A = u2A = u3A = 1,u1B = u2B = u3B = 0, and u11 = u22 = u33 = 0.

There is no individually stable matching. If 1 is in school A, he could either
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be matched with 2 or 3 or himself, and in any case, either 2 or 3 will form a

blocking pair with 1. If 1 is not in school A, he could always form a blocking

pair with any agent in A. Therefore, an individually stable matching doesn't

exist.

Evidently, it can also be shown that Bogomolnaia and Jackson's proof (2002)

doesn't work. Firstly, note that since the preferences are symmetric, ∀i, j ∈

N, ui(j) = uj(i). For simplicity, I denote ui(j) as uij . For a school s ∈ S, I de-

note the students' utility from being in schools s as uis. According to Bogomol-

naia et.al's proof , a coalition structure π that maximzes
∑

kj:∃s∈π,k,j∈s∩N ukj+∑
k∈N uk(π(k)∩S) will be stable. It relies on the fact that the sum will strictly

increase if I allow a blocking agent to deviate to his desired matching. However,

this is no longer true for the school admission model. For any agent i ∈ N and

any two coalitions π(i) and any m ∈ Oc
πthat is at full capacity (ie: m /∈ Oπ

), agent i ∈ N would be blocking and want to deviate to m if there exists

an agent p ∈ N such that π(p) = m and (m\{p}) ∪ {i} ≻i π(i), and ∀j ∈

(m\{p}) ∩N, (m\{p}) ∪ {i} ≿j m. This is equivalent to saying
∑

j∈m\{p} uij >∑
j∈π(i) uij and

∑
j∈m\{p} uij ≥

∑
j∈m\{p} upj . However, I no longer have∑

kj:∃s∈π,k,j∈s∩N ukj+
∑

k∈N uk(π(k)∩S) will strictly increase if the agent i could

pro�tably deviate. Suppose i pro�tably deviates to a non-open coalition from

π to µ. (
∑

k,j:∃s∈µ,k,j∈s∩N ukj +
∑

k∈N uk(µ(k)∩S)) − (
∑

k,j:∃s∈π,k,j∈s∩N ukj +∑
k∈N uk(π(k)∩S)) is the change in sum of utility of the all student pairs k, j that

are within the same coalition from matching π to µ. I know that this term will

equal to
∑

j∈m\{p} uij−
∑

j∈π(i) uij−
∑

j∈m\{p} upj+
∑

j∈µ(p) upj . Firstly, I can

not know the exact sign of this term without knowing where p goes. In fact, I

don't know where p goes because I don't care about what happens to p in the

de�nition of individually unstable blocking groups. Only if p is better o� in µ
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do I know that the term is positive because I have
∑

j∈m\{p} uij >
∑

j∈π(i) uij

and
∑

j∈m\{p} upj <
∑

j∈µ(p) upj . However, that is not always guaranteed.

Therefore, I do not know the exact change in utility when one blocking group

is resolved, so I can't prove the existence of individually stable matching by

maximizing the sum of utilities.

As I illustrated, the main reason the Bogomolnaia and Jackson proof (2002)

does not work is due to the capacity constraint for coalitions imposed by the

schools, which is also one of the major di�erences between the school admission

model and a classical hedonic game. Consequently, it is possible to extend the

proof of Bogomolnaia and Jackson's proof (2002) if I consider the case where

schools have in�nite capacities. Since there are no capacity constraints, every

coalition would be open.

Proposition 1. If the preferences are additively separable and symmetric, and

there are no capacity constraint, an individually stable matching exists.

Proof. It is su�cient to show that under symmetry and additive separability,

there exists a matching where no agent can pro�tably deviate. For any agent

i ∈ N and any two coalitions π(i) and any m ∈ Oπ, if the coalition m is

not at full capacity, then i is willing to deviate from π(i) to m if and only if

m ∪ {i} ≻i π(i) ⇐⇒
∑

j∈m uij >
∑

j∈π(i) uij . The two sums include the utility

of all elements in i's coalition, and j could be either a school or a student. Con-

sider the sum
∑

k,j:∃s∈π,k,j∈s∩N ukj +
∑

k∈N uk(π(k)∩S), which sums the utility

between all student pairs k, j that are within the same coalition and the utility

of all agents for being at the school he is assigned to. No agent could pro�tably

deviate to another coalition if the sum is maximized. For any coalition struc-

tures π, if agent i can pro�tably deviate to another coalition, there must exist

a coalition structure µ, and an agent i could pro�tably deviate if
∑

j∈µ(i) uij >∑
j∈π(i) uij . This also means that

∑
k,j:∃s∈µ,k,j∈s∩N ukj +

∑
k∈N uk(µ(k)∩S) >
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∑
k,j:∃s∈π,k,j∈s∩N ukj +

∑
k∈N uk(π(k)∩S) because for all terms ukj such that

k, j ̸= i the utility level doesn't change from µ to π due to additive separability.

For π ,the terms ukjsuch that k or j = i are exactly the terms
∑

j∈π(i) uij ,

and the same holds for µ. Therefore, If an agent can pro�tably deviate to

another coalition from coalition structure π, there must exist some coalition

structure µ where the sum
∑

k,j:∃s∈µ,k,j∈s∩N ukj +
∑

k∈N uk(µ(k)∩S) is bigger

than the sum for π. If the sum
∑

kj:∃s∈π,k,j∈s∩N ukj +
∑

k∈N uk(π(k)∩S) is max-

imized, there exists a matching π where no agent can pro�tably deviate to

another coalition. There are �nitely many possible coalition structures, the set

of possible values of
∑

kj:∃s∈π,k,j∈s∩N ukj +
∑

k∈N uk(π(k)∩S) is also �nite, so

max
∑

kj:∃s∈π,k,j∈s∩N ukj +
∑

k∈N uk(π(k)∩S) exists. Therefore, there exists a

coalition structure π where no agents will pro�tably deviate. This is su�cient

to ensure the existence of an individually stable matching when there are no

capacity constraints in these games.

4 Group Stability

De�nition 5. A matching π is group stable if and only if there doesn't exist

any blocking group B s.t B ⊆ N, ∃si ∈ S ∪{/O}, ci ≥ |B|, s.t ∀n ∈ B, {si, B} ≿n

π(n),∀n ∈ B\{B ∩ si}, {si, B} ≻n π(n).

A blocking group in terms of group stability is a group of agents that weakly

prefer forming another coalition within themselves to their current coalition.

For the students in this coalition who want to move to a di�erent school, they

need to strictly prefer the coalition formed by the blocking group to their current

coalition. Notice that this blocking group must include all agents in the coalition

that the blocking agents prefer to their current coalition. Note that group

stability can be viewed as a direct extension of individual stability by allowing
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more than one student to block. In fact, group stability implies individual

stability.

Lemma 2. Group stable matchings are always individually stable.

Proof. If a coalition structure µ is not individually stable, then there exists

a blocking group such that one student strictly prefers being matched with

everyone else in the blocking group and their school to his current school and

classmates. Therefore, µ is not group stable.

In a classical hedonic game where agents have preferences only over their

group members and are divided into groups, Banerjee. et al(2001) proved that

the top coalition property is su�cient to guarantee the existence of core sta-

ble matchings in Theorem 2. Core stability requires that there doesn't exist a

blocking group such that every agent preferres the blocking group to their cur-

rent matching. However, for a blocking group in group stability, I encorporated

schools into the blocking group. Moreover, I only require students that move to

a di�erent school to be strictly better o�.

In this paper, I will also use this property to ensure the existence of group

stable matching, and it's necessary to extend its de�nition to the context of our

model.

De�nition 6. A hedonic game satis�es the top coalition property i� ∀a ⊆ N ∪

S, a ̸= Ø,∃z ⊆ a, z ̸= Ø, |z ∩ S| ≤ 1, s.t if ∃si ∈ z, s.t si ∈ S, then ci ≥ |z|,and ∀n ∈

z ∩N, z ≿n x ∀x ⊆ a s.t n ∈ x.

(note that the set {si, z} is referred to as the top coalition of subset a)

This property requires that for all nonempty subsets a of all players N ∪ S,

there must be a non-empty subset z of a ,called the top coalition. Every student

n in this top coalition must weakly prefer this coalition over any other possible
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coalition that they can form with agents in a. This top coalition can include

at most one school. If this top coalition includes a school, the capacity of the

school si should be weakly smaller than the size of the coalition. Note that

there could be more than one top coalition in a, but I only require that there

is at least one top coalition in every a. In a classical hedonic game, it can be

shown that a game that satis�es this assumption and has strict preferences will

always have core stable matchings. I have also adopted this assumption as one

of the preconditions to ensure the existence of a group stable matching.

De�nition 7. A hedonic game satis�es the non-rival property i� for any top

coalitions a, b from any subsets of N ,a ∩ b = /O.

Non-rival property basically ensures that there are not two groups of students

who want to go to the same school with their coalition. If this happens, a group

stable matching could never exist because either group will always block. Below

is an example of a preference that satisfy these two conditions where there are

two schools {A,B} and two students {1, 2}. The capacity of school A is 2 and

the capacity of school B is 1. Their preference pro�les are described as below:

≿1: {1, 2, A} ≻ {1, A} ≻ {1} ≻ {1, B}

≿2: {1, 2, A} ≻ {2, B} ≻ {2, A} ≻ {2}

This set of preferences satisfy both the non-rival property and the top coali-

tion property. The unique group stable coalition is {(1,2,A),(B)}

Notice that if the set of preferences doesn't satisfy the non rival property, a

group stable matching will not exist:

≿1: {1, A} ≻ {1, 2, A} ≻ {1} ≻ {1, B}

≿2: {2, A} ≻ {1, 2, A} ≻ {2, B} ≻ {2}

I can trivially show that these preferences satisfy the top coalition property.

However, for the set {1,2,A,B}, there are two top coalitions:{1, A}, {2, A}. Ob-

viously, their intersection is not empty. Therefore, either of the top coalition
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will always block for any arbitrary coalition structure.

Theorem 1. A unique group stable matching exists if preferences are strict,

and the top coalition and non-rival properties are satis�ed.

Proof. The statement will be proved in a similar manner to Banerjee et. al(2001)'s

proof. The main di�erences come from the addition of schools. Agents not only

have preferences over possible subsets of students, they also have preferences

over schools. Since coalitions are viewed as groups of students at a school, the

same group of students that are assigned to di�erent schools will be consid-

ered as di�erent coalitions. Schools also have capacity constraints, so that some

coalitions may not exceed certain sizes. While only the top coalition property is

su�cient for the existence of core stable matchings in classical hedonic games,

it is no longer su�cient in this context unless the non-rival property is also

satis�ed.

Deonte the set of all top coalitions in f as Tf = {xf1 , xf2 ..., xfk}, f ⊆ N .

For this matching algorithm, I start with the entire set of students and schools

N1 = N ∪ S and match all the top coalitions in N1, and I can do this because

the intersection between any of these coalitions is empty. Then I consider the

set N2 = N1\
⋃

x∈TN
x , and match all top coalitions in N2. For step m, I match

all top coalitions in the set Nm = Nm−1\
⋃

x∈TNm−1
x. Continue inductively

until I have Nn = /O for some n ∈ N. I know that such an algorithm terminates

in �nite steps because N is a �nite set, and at least one top coalition exists in

every step. The produced matching will be stable because all students in top

coalitions of N1 are in their most preferred matchings, so they will not form

a blocking group. There are only two cases where students in top coalitions

of N2 could be better o�. Firstly, they could be better o� forming coalitions

with agents in TN1
, but these students are in their most preferred matchings.

Otherwise, they might be better o� if they form a coalition with agents in N2to
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go to schools that are occupied by previous top coalitions; however, notice that

this would violate the non-rival property. Subsequently, agents in top coalitions

of Ni, will only be better o� forming a coalition with students in top coalitions

of Nj s.t j < i. Therefore, this matching is stable.

This matching is also unique. I can prove this by contradiction. Suppose

another matching µ is also stable, it must contain all coalitions in TN1because

any coalition in TN1
that is not in µ would form a blocking group. By the top

coalition property, all agents in coalitions in TN1
strictly prefer their coalition

in TN1 than any other coalitions that they could form with students in N and

schools in S. If µ has all coalition in TN1
, then all agents in TN1

will never

block. It must also contain all coalitions in TN2
, otherwise coalitions in TN2

will

block. Continue inductively, I have that matching µ must be the matching that

I construct above.

5 Strategyproofness of the top coalition algorithm

Now let's consider an algorithm that is based on the top coalition property.

Suppose people have strict preferences, and their preferences satisfy the top

coalition and non-rival property, then this algorithm produces a unique group

stable matching. The �rst stage of the algorithm begins by allowing every

student to submit a proposal to their most preferred coalition.This includes a

school and a group of students.If there exists a proposed coalition for which

all students in that coalition proposed that coalition, the proposed coalition is

formed.The students who are not matched in a coalition will proceed to the

next stage. For the second stage, I are left with a subset of all students N

for whom the initial proposal is not accepted. I allow those students whose

proposal in the �rst stage is not feasible anymore to submit a new proposal(ie.
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some agents in their previous proposal are matched with others). The implicit

rule is that agents whose proposals were not accepted in the previous round can

not change their proposal unless their proposal becomes unfeasible. This rule

should be satis�ed by all rational agents. Suppose they choose coalition a as

their most preferred coalition in the previous round, in the next round, coalition

a should still be their most preferred coalition if it's available because their set of

choices strictly decreases from the previous stage. All proposed coalitions that

are proposed by all of its members are formed. Then I begin the third stage of

proposals with all students whose proposals were not successful and continue as

I did in the previous stages.

This algorithm will always end in �nite steps because I have that a top coali-

tion exists in any subset of N , so at least one proposed coalition will be formed

in every stage. Therefore, the number of students that are left unmatched in

each stage is strictly decreasing. Obviously, this algorithm produces a group

stable matching because it matches the top coalitions in every stage. The intu-

ition is exactly the same as the previous proof for top coalition property.All the

students who were matched in the �rst stage are not willing to deviate because

they are already in their most preferred matching. All the students who are

matched in the second stage are matched with their most preferred coalition in

the second stage, and they are only better o� if they are matched with students

who are matched in the �rst stage. For any stage n > 1 , the students are

only better o� if they are matched with students who formed coalitions in the

previous stages. Therefore, the matching is stable.It's desirable for us to asses

whether this algorithm is strategy-proof. An algorithm is said to be strate-

gyproof if it is always a weakly dominant strategy for any player to reveal their

true preference regardless of what others do.

Theorem 2. The top coalition algorithm is strategy-proof.

16



Proof. I want to show that it's a best response for any player n ∈ N to reveal

his true preference given any arbitrary strategy pro�le ≿−n of all other players.

This is equivalent to saying that it's a best response for any player n ∈ N to

propose his top coalition in any stage for any ≿−n. I denote the strategy where

player n always proposes his top coalitions as ≿t(n) and denote the coalition

that player n will achieve from this strategy as t. By contradiction, suppose

that there exists a player n and a strategy pro�le ≿−n of all other players,

for which reporting top coalition is not player n's best response. It must be

that there exists a set of strategies ≿x(n) of n such that n is matched to some

coalition x and x ≻n t.

Given the existence of strategies ≿x(n) of n, if we �x ≿−n for other players,

when n plays ≿t(n), we can show that n can choose to propose x in any period,

and he will be matched. Note that this also means that all members of x will

not be matched until n is matched because everyone in x except n proposed x,

and they will not be able to change their proposal until n is matched. To show

this, consider the game where n plays a strategy in set ≿x(n) such that n is

matched to x in the earliest stage, there must exist a stage o where n proposes

x and is matched. o is the earliest stage for which everyone in x proposes x.

First, we want to show that everyone in x will stay unmatched until o if n

plays ≿t(n). Since only n changed strategy, all proposed coalitions without n

before stage o for the game where n plays ≿x(n) will still form in the game where

n plays ≿t(n). Likewise, those that didn't form will still not form. n will also

not form any coalition because, by de�nition , we know that n is proposing his

top coalition in every stage. If he is matched, it means t ≻n x which contradicts

our assumption. Therefore, all members of x will stay unmatched until stage o

in the game where n plays ≿t(n).

This is su�cient to show that when n is playing ≿t(n), he can deviate to
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propose x in any period to be matched. Since all other members of x will stay

unmatched until stage o and will propose x in stage o, n can propose x in any

stage before o and he will be matched in stage o. He can also propose x in any

stage after o and get matched in that stage because all members in x except n

proposed x in stage o.

Suppose n is playing ≿t(n), in any stage, if he proposes a top coalition c ,

it must be that c ≻n x because x is also feasible. He must not be matched to

c because if he does, we have c = t ≻n x. We have reached a contradiction

because we get that n can't be matched in any stage while, by assumption, we

have n is matched to some top coalition t. Therefore, such x doesn't exist, and

≿t(n) is n's best response for any arbitrary strategy pro�le ≿−n of all other

players.

6 Conclusion

To address students' preferences regarding diversity, this paper investigates the

school admission model within the framework of a hedonic game. With slight

modi�cations, I have de�ned the concepts of individual stability and group sta-

bility, analogous to individual stability and core stability in a classical hedonic

game. Although additive separability and symmetry are su�cient to guarantee

the existence of individually stable matchings in classical hedonic games, these

conditions are no longer su�cient for the school admission model due to ca-

pacity constraints. However, Banerjee et al. (2001)'s proof for the existence of

core stable matchings can be extended to ensure the existence of group stable

matchings by imposing a new restriction: the non-rival property. An algorithm

that is strategy-proof and produces such group stable matchings has also been

shown to exist.
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Further extension of the model is desirable, as the schools' preferences have

not been incorporated. However, since the schools also have preferences over

subsets of students, it's likely that the same results for the existence of stable

matchings hold.
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