Maldonado Lab: Cheaper, greener way to grow cystalline semiconductor films
- News
-
- Search News
-
- Dreyfus-Teacher Scholar Award for Szymczak
- Sanford Named to AAAS
- Biemann Medal for Hakansson
- Sanford Honored with Election to National Academy of Sciences
- McNeil Lab: A more accurate sensor for lead paint
- Schindler Named 2016 Packard Fellow
- Sloan Fellowships for Pratt and Schindler
- Walter Lab: Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution
- Maldonado Lab: Cheaper, greener way to grow cystalline semiconductor films
- New polymer allows researchers to study how proteins fold, function
- Researchers focus on cell membranes to develop Alzheimer's treatments
- Video: Research on Lipid Bilayer and Relation to Amyloid-β
- Biteen Lab: Accounting for the "scooching effect"
- Pratt Lab: Molecular Iodine Found in Arctic Atmosphere
- Marsh & McNeil Named AAAS Fellows
- Ramamoorthy Lab: Nanodiscs catch mis-folding amyloid proteins
- Ault Named 2018 Sloan Fellow
- Biteen Lab: Starch Utilization System Assembles around Stationary Starch-Binding Proteins
- Biteen Lab: Starch Utilization System Assembles around Stationary Starch-Binding Proteins
- Pratt & Ault Labs: Harmful algal blooms can become airborne
- Meet Professor Bunsen Burns
- Shedding New Light on Photosynthetic Pigments
- Ruotolo Lab: New Method to ID Proteins
- Energy Research And Education Fuel McCrory CAREER Award
- Building Motors to Drive Nanorobots
- Fast, sensitive mass spectrometer will help UM chemists profile proteins and metabolites
- Award Season for Michigan Chemistry
- Chem Alum Receives Honorary Degree, Gives Rackham Commencement Address
- Alum Named Science Teacher of the Year
- MichiganChem boosts facility for atomic resolution
- DOE Early Career Award for Kerri Pratt
- ACS Honors Alum Weihong Tan
- Michigan Adds Chemistry Education Faculty Position
- Mapp Lab: New research clarifies how ‘fuzzy’ proteins can be used to develop novel drugs
- Karle Symposium Showcases Our Innovative Research
- UM scientists improve synthesis of PET imaging molecules
- MichiganChem Goes to the North Pole
- Diversity Service Award for Nicolai Lehnert
- Two elected Fellows of Royal Society of Chemistry
- Graduate Student Coordinator Honored
- 2018 Mentoring Award Recognizes Unique Programs
- Chen Named AAAS Fellow
- Chem 211 makes organic chem lab real for intro students
- Stephenson Lab: Designing a safer drug building block through photocatalysis
- "Compute-To-Learn" Bridges Classroom to Real-World Experiences
- Meet Roy Wentz: Chemistry's Custom Glassblower
- Michigan Students to Organize American Chemical Society Grad Symposium
- Anna Mapp honored for exceptional efforts to recruit and mentor students from non-traditional backgrounds
- Chemistry Alums Boyd and Pérez-Temprano Named to Talented 12
- Sharing Chemistry with the Community
- Awards Luncheon Offers Recognition for Outstanding Students
- Chemistry Faculty and Staff Collect Honors for Their Work
- Chemistry Writing: More Than Just Lab Reports
- Featured on the UM Gateway: Chemistry D-RISE Alum
- Hot climate, cool science :: Novel instrumentation applied to Arctic atmosphere earns Pratt "40 under 40" honors
- Kennedy Awarded Martin Medal for Achievements in Separation Science
- UM Chemists finding new opportunities in quantum science
- Alumna Sumita Mitra Inducted into National Inventors Hall of Fame
- Walter lab: RNA molecule senses a small metal ion to ramp up bacterium’s detox machine
- Create for Chemistry art contest
- Matzger Lab: A fix for insoluble drugs
- Dope Labs podcast explores the science behind pop culture phenomena
- Travel begets new data and new insights for Michigan Chem grad students
- Kopelman Lab: Nanoparticles + photoacoustic imaging-- a route to better cancer treatment decisions?
- Wang Lab: A productive first year
- National ACS Awards for Four Michigan Faculty
- Montgomery Named Thurnau Professor
- Mental Health, Well-Being and Research
- U-M to 3M: Transitioning to Industry after your PhD
- Chemistry Coping with COVID-19
- Chem Alums Create Crowdfunding Platform
- NSF Graduate Research Fellowships Announced
- Chem Master's Application Re-opened
- Chemistry Awards Announced
- New podcast: "My Fave Queer Chemist”
- Meet Josh Buss
- M|CORE: Preview program lowers barriers to graduate school
- Soellner Joins Michigan Chemistry
- Meet Chem Lecturer Nicole Tuttle
- Archived News
- UM Chemistry Featured Elsewhere
- Events
Device to simultaneously synthesize and deposit crystalline semiconductor films from water at room temperatures
University of Michigan chemists have developed a greener, cheaper way to make single-crystalline semiconductor films, components at the heart of all of our electric gadgetry.
Single-crystalline films of inorganic semiconductors are the bedrock of nearly all electronics, including smartphones, computers and solar panels. The fastest integrated circuits feature transistors consisting of germanium films on silicon. But such materials are typically only prepared at elevated temperatures, with complex machinery that involve hazardous gases.
The UM team, led by Stephen Maldonado, an associate professor of chemistry, has invented a method to simultaneously synthesize and deposit crystalline semiconductor films from water at room temperatures using equipment that can be assembled for just a few dollars.
"Our method doesn't require excess heat, and everything is done in an aqueous solution so we're not using any toxic precursors," Maldonado said. "And we're doing this without sacrificing any quality in the crystallinity of the material, which is usually the trade-off."
To do this, Maldonado and his team make a thin, liquid metal film that rests on a substrate that they connect to a power supply. When they electrify the metal film, molecules on the surface of that film—if they're in contact with water—can be reduced into their elemental parts. In this case, units of dissolved germanium oxide are transformed into germanium atoms that dissolve into the liquid metal film.
"If the liquid metal film is thin enough, the germanium atoms will precipitate out, but selectively at the bottom and
as a uniform crystalline film." Maldonado said. "The cool thing about this is we're taking an oxidized precursor—like what you'd find in nature—and in one process step, we can produce a technologically relevant film that is one large contiguous crystal."
Maldonado said his team's next steps will be to do the same process with silicon. The chemistry is more nuanced but the principle is the same.
Ultimately, without complex machinery and high temperatures, Maldonado's process could provide a cheaper, greener way to produce semiconductors.
"There's a reason why everyone on the face of this planet doesn't have access to advanced electronics," Maldonado said. "Making high performance semiconductor devices requires a substantial infrastructure."
"This process, in terms of the key elements of it—we're talking about stuff you can get at RadioShack. You don't need high temperature, you don't need elaborate machinery. You just need a means to draw and measure a current, but the electronics you could literally put together for $20. This work is a step towards a semiconductor manufacturing industry that could be run by anyone, anywhere."
The team's research is published in the Journal of the American Chemical Society:
--Morgan Sherburne, UM News