Biteen Lab: Starch Utilization System Assembles around Stationary Starch-Binding Proteins
- News
-
- Search News
-
- Dreyfus-Teacher Scholar Award for Szymczak
- Sanford Named to AAAS
- Biemann Medal for Hakansson
- Sanford Honored with Election to National Academy of Sciences
- McNeil Lab: A more accurate sensor for lead paint
- Schindler Named 2016 Packard Fellow
- Sloan Fellowships for Pratt and Schindler
- Walter Lab: Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution
- Maldonado Lab: Cheaper, greener way to grow cystalline seminconductor films
- New polymer allows researchers to study how proteins fold, function
- Researchers focus on cell membranes to develop Alzheimer's treatments
- Video: Research on Lipid Bilayer and Relation to Amyloid-β
- Biteen Lab: Accounting for the "scooching effect"
- Pratt Lab: Molecular Iodine Found in Arctic Atmosphere
- Marsh & McNeil Named AAAS Fellows
- Ramamoorthy Lab: Nanodiscs catch mis-folding amyloid proteins
- Ault Named 2018 Sloan Fellow
- Biteen Lab: Starch Utilization System Assembles around Stationary Starch-Binding Proteins
- Biteen Lab: Starch Utilization System Assembles around Stationary Starch-Binding Proteins
- Pratt & Ault Labs: Harmful algal blooms can become airborne
- Meet Professor Bunsen Burns
- Shedding New Light on Photosynthetic Pigments
- Ruotolo Lab: New Method to ID Proteins
- Energy Research And Education Fuel McCrory CAREER Award
- Building Motors to Drive Nanorobots
- Fast, sensitive mass spectrometer will help UM chemists profile proteins and metabolites
- Award Season for Michigan Chemistry
- Chem Alum Receives Honorary Degree, Gives Rackham Commencement Address
- Alum Named Science Teacher of the Year
- MichiganChem boosts facility for atomic resolution
- DOE Early Career Award for Kerri Pratt
- ACS Honors Alum Weihong Tan
- Michigan Adds Chemistry Education Faculty Position
- Mapp Lab: New research clarifies how ‘fuzzy’ proteins can be used to develop novel drugs
- Karle Symposium Showcases Our Innovative Research
- UM scientists improve synthesis of PET imaging molecules
- MichiganChem Goes to the North Pole
- Diversity Service Award for Nicolai Lehnert
- Two elected Fellows of Royal Society of Chemistry
- Graduate Student Coordinator Honored
- 2018 Mentoring Award Recognizes Unique Programs
- Chen Named AAAS Fellow
- Chem 211 makes organic chem lab real for intro students
- Stephenson Lab: Designing a safer drug building block through photocatalysis
- "Compute-To-Learn" Bridges Classroom to Real-World Experiences
- Meet Roy Wentz: Chemistry's Custom Glassblower
- Michigan Students to Organize American Chemical Society Grad Symposium
- Anna Mapp honored for exceptional efforts to recruit and mentor students from non-traditional backgrounds
- Chemistry Alums Boyd and Pérez-Temprano Named to Talented 12
- Sharing Chemistry with the Community
- Awards Luncheon Offers Recognition for Outstanding Students
- Chemistry Faculty and Staff Collect Honors for Their Work
- Chemistry Writing: More Than Just Lab Reports
- Featured on the UM Gateway: Chemistry D-RISE Alum
- Hot climate, cool science :: Novel instrumentation applied to Arctic atmosphere earns Pratt "40 under 40" honors
- Kennedy Awarded Martin Medal for Achievements in Separation Science
- UM Chemists finding new opportunities in quantum science
- Alumna Sumita Mitra Inducted into National Inventors Hall of Fame
- Walter lab: RNA molecule senses a small metal ion to ramp up bacterium’s detox machine
- Create for Chemistry art contest
- Matzger Lab: A fix for insoluble drugs
- Dope Labs podcast explores the science behind pop culture phenomena
- Travel begets new data and new insights for Michigan Chem grad students
- Kopelman Lab: Nanoparticles + photoacoustic imaging-- a route to better cancer treatment decisions?
- Wang Lab: A productive first year
- National ACS Awards for Four Michigan Faculty
- Montgomery Named Thurnau Professor
- Mental Health, Well-Being and Research
- U-M to 3M: Transitioning to Industry after your PhD
- Chemistry Coping with COVID-19
- Chem Alums Create Crowdfunding Platform
- NSF Graduate Research Fellowships Announced
- Chem Master's Application Re-opened
- Chemistry Awards Announced
- New podcast: "My Fave Queer Chemist”
- Meet Josh Buss
- M|CORE: Preview program lowers barriers to graduate school
- Soellner Joins Michigan Chemistry
- Meet Chem Lecturer Nicole Tuttle
- Archived News
- UM Chemistry Featured Elsewhere
- Events
Soft foods like white bread and rice might seem like an easy thing for your body to digest, but a tiny organism in your gut is actually responsible for chowing down some types of starch and turning it into nutrients your body can use.
Now, a team of University of Michigan researchers has unpacked an element of this process, which will ultimately help both in the development of probiotics and to inform doctors who are prescribing antibiotics.
One type of gut bacteria that breaks down dietary carbohydrates like starch is called Bacteroides thetaiotaomicron, or Bt. Bt is a member of a dominant group of bacteria that live in the gut and are essential parts of your microbiome—the community of microorganisms that live in your body.
"For example, after you take antibiotics for an ear infection, you might have an upset stomach. That's because the antibiotic is not selective. It's just wiping out all the bacteria—the good and the bad—in your gut," said Julie Biteen, U-M associate professor of chemistry and biophysics. "So what we're studying are the good bacteria, and focusing on the proteins on the surface of the Bt cell that recognize starch, break it down into simpler sugar units, and then internalize these nutrients into the cell."
There are five starch-metabolizing proteins on the surface of the Bt cell. Together, this protein complex is called the starch utilization system, or Sus. Previous work by Biteen's lab found that one of the proteins in this system, SusG, is mobile—it roams the surface of Bt, slows down when it encounters the other complex proteins, and stops when it binds starch.
Biteen and her colleagues assumed the same would be true of two other Bt surface proteins, SusE and SusF. Instead, in this new study, they found that these two proteins are stationary, even though they are held to the cell by just a wisp of a lipid chain. Their results are published in Biophysical Journal.
"We didn't definitively solve the question of why these proteins are immobile, but we did prove that this immobility is a really key characteristic of these proteins," Biteen said. "Due to competition, bacteria are highly evolved. They can't expend energy to do something they don't have to, and vice versa."
SusE and SusF may be immobile because it's more efficient for them to form a complex with the mobile SusG in order to start metabolizing starch the moment they contact it, Biteen says.
This expanded description of how the Sus system works brings us one step further toward developing more effective probiotic therapies, or more targeted antibiotics.
"Those applications may seem pretty far removed from the basic chemistry we're doing here, but the tools we've developed to study the prototypical Sus system will also let us probe other protein complexes in gut bacteria," Biteen said. "These experiments are not easy, but we've now developed tools that can extend our investigations from Sus to other systems in the microbiome."
Biteen's co-authors are Hannah Tuson in the U-M Department of Chemistry and Matthew Foley and Nicole Koropatkin in the U-M Medical School's Department of Microbiology and Immunology.
--Morgan Sherburne, UM News
More information:
- Study: The Starch Utilization System Assembles around Stationary Starch-Binding Proteins Biophysical Journal