The complexities of the biological sciences make interdisciplinary involvement essential and the increasing use of mathematics in biology is inevitable as biology becomes more quantitative. Mathematical biology is a fast growing and exciting modern application of mathematics that has gained world- wide recognition. In this course, mathematical models that suggest possible mechanisms that may underlie specific biological processes are developed and analyzed. Another major emphasis of the course is illustrating how these models can be used to predict what may follow under currently untested conditions. The course moves from classical to contemporary models at the population, organ, cellular, and molecular levels. The goals of this course are: (i) Critical understanding of the use of differential equation methods in mathematical biology and (ii) Exposure to specialized mathematical and computational techniques which are required to study ordinary differential equations that arise in mathematical biology. By the end of this course students will be able to derive, interpret, solve, understand, discuss, and critique discrete and differential equation models of biological systems.
For more information on this course, please visit the Department of Mathematics webpage