Skip to Content

Search: {{$root.lsaSearchQuery.q}}, Page {{$root.page}}

Astronomy Colloquium Series Presents

Jorge G. Moreno Soto, Assistant Professor, Pomona College
Thursday, October 8, 2020
3:30-4:30 PM
Off Campus Location
Spatially Resolved Galaxy Interactions

For decades, late-stage galaxy mergers have been recognized as naturally occurring events within the hierarchical LCDM paradigm, capable of triggering starburst and quasars. Early-stage mergers (interactions), albeit not as dramatic as their late-stage counterparts, are believed to shape galaxies in gentler and more long-lasting ways: by enhancing star formation, suppressing gas metallicity, igniting AGNs, augmenting H2 fuel, etc. But more importantly, their cumulative effect may ultimately stimulate the transformation of spirals into lenticulars in dense environments. The focus of this talk is to address the spatial structure and evolution of star formation and the interstellar medium (ISM) in interacting galaxies. We use an extensive suite of parsec-scale galaxy merger simulations (stellar mass ratio = 2.5:1), which employs the "Feedback In Realistic Environments-" model (FIRE-2). This framework resolves star formation, feedback processes, and the multi-phase structure of the ISM. We focus on the galaxy-pair stages of interaction. We find that close encounters substantially augment cool (HI) and cold-dense (H2) gas budgets, elevating the formation of new stars as a result. This enhancement is centrally-concentrated for the secondary galaxy, and more radially extended for the primary. This behaviour is weakly dependent on orbital geometry. We also find that galaxies with elevated global star formation rate (SFR) experience intense nuclear SFR enhancement, driven by high levels of either star formation efficiency (SFE) or available cold-dense gas fuel. Galaxies with suppressed global SFR also contain a nuclear cold-dense gas reservoir, but low SFE levels diminish SFR in the central region. Concretely, in the majority of cases, SFR-enhancement in the central kiloparsec is fuel-driven (55% for the secondary, 71% for the primary) -- whilst central SFR-suppression is efficiency-driven (91% for the secondary, 97% for the primary). Our numerical predictions underscore the need of substantially larger, and/or merger-dedicated, spatially-resolved (integral-field spectroscopic) galaxy surveys -- capable of examining vast and diverse samples of interacting systems -- coupled with multi-wavelength campaigns aimed to capture their internal ISM structure.

Should you require any accommodations to ensure equal access and opportunity related to this event please contact Stacy Tiburzi at 734-764-3440 or stibu@umich.edu.
Building: Off Campus Location
Location: Virtual
Website:
Event Type: Workshop / Seminar
Tags: astronomy
Source: Happening @ Michigan from Department of Astronomy, Department of Physics, Michigan Institute for Research in Astrophysics