Associate Professor of Physics, Mathematics, Complex Systems
About
Professor Deegan’s research focuses on the dynamics of non-equilibrium systems. As a system, such as a fluid or a solid, is driven from equilibrium, it undergoes a series of transitions to progressively more organized dynamics. Everyday examples of this phenomenon are the bands of Jupiter, the Giant’s Causeway, and the crumpled edges of lettuce leaves. Dynamical transitions share many similarities with thermally driven phase transitions, which suggests the existence of a yet-to-be-discovered general principle for dynamical transitions equivalent to the minimum free energy principle of thermodynamics.
Professor Deegan studies dynamical transitions though table-top experiments with the aim of understanding the origin of this behavior in each specific case and in general. His research covers a broad range of phenomena from drying drops to bursting balloons to vibrated slurries. Currently, he is investigating drop impact and the instability that produces the famous Edgerton crown, and pattern formation in chemical reactions and complex fluids.
Selected Publications
Electrowetting on Semiconductors, (C. Palma, & R. D. Deegan), Applied Physics Letters 106, 014106 (2015).
Drop Impact into a Deep Pool: Vortex Shedding and Jet Formation, (G. Agbaglah, M.-J. Thoraval, S. T. Thoroddsen, L. V. Zhang, K. Fezzaa, R. D. Deegan), Journal of Fluid Mechanics, 764, R1 (2015).
Growth and Instability of the Liquid Rim in the Crown Splash Regime, (G. Agbaglah, and R.D. Deegan), Journal of Fluid Mechanics 752, 485 (2014).
Localized Structures in Vibrated Emulsions, (C. Falcon, J. Bruggemann, M. Pasquali and R. D. Deegan), Europhysics Letters 98, 24002 (2012).
Finessing the Fracture Energy Barrier in Ballistic Seed Dispersal, R. D. Deegan, Proceedings of the National Academy of Science 20, 5166 (2012).
Field(s) of Study
- Experimental nonlinear dynamics, pattern formation in fluids and solids, and complex systems