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Abstract. The rho-tau embedding of a parametric statistical model
defines both a Riemannian metric, called “rho-tau metric”, and an alpha
family of rho-tau connections. We give a set of equivalent conditions for
such a metric to become Hessian and for the ±1-connections to be dually
flat. Next we argue that for any choice of strictly increasing functions
ρ(u) and τ(u) one can construct a statistical model which is Hessian
and phi-exponential. The metric derived from the escort expectations is
conformally equivalent with the rho-tau metric. AQ1

Keywords: Hessian geometry · Dually-flat · rho-tau embedding · phi-
exponential family · Escort probability

1 Introduction

Amari [1,2] introduced the alpha family of connections Γ (α) for a statistical
model belonging to the exponential family. He showed that Γ (α) and Γ (−α) are
each others dual and that for α = ±1 the corresponding geometries are flat. Both
the notions of an alpha family of connections and that of an exponential family
of statistical models have been generalized. The present paper combines two
general settings, that of the alpha family of connections determined by rho-tau
embeddings [3] and that of phi-deformed exponential families [4].

Let M denote the space of probability density functions over the measure
space (X ,dx). A parametric model pθ is a map from some open domain in R

n

into M. It becomes a parametric statistical model if θ → pθ is a Riemannian
manifold with metric tensor g(θ).

Throughout the paper it is assumed that two strictly increasing functions ρ
and τ are given. The rho-tau divergence (see Part I) induces a metric tensor g
on finite-dimensional manifolds of probability distributions and makes them into
Riemannian manifolds.
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2 J. Naudts and J. Zhang

2 The Metric Tensor

The rho-tau divergence Dρ,τ (p, q) can be used [3,5,6] to define a metric tensor
g(θ) by

gi,j(θ) = ∂j∂iDρ,τ (p, pθ)
∣
∣
∣
∣
p=pθ

, (1)

with ∂i = ∂/∂θi. A short calculation gives

gij(θ) =
∫

X
dx

[

∂iτ(pθ(x))
] [

∂jρ(pθ(x))
]

. (2)

Because τ = f ′ ◦ ρ, the rho-tau metric g(θ) also takes the form:

gij(θ) =
∫

X
dx

[

∂if
′(ρ(pθ(x)))

] [

∂jρ(pθ(x))
]

=
∫

X
dx f ′′(ρ(pθ(x)))

[

∂iρ(pθ(x))
] [

∂jρ(pθ(x))
]

.

This shows that the matrix g(θ) is symmetric. Moreover, it is positive-
definite, because the derivatives ρ′ and f ′′ are strictly positive and the matrix
with components

(

∂jp
θ(x)

) (

∂ip
θ(x)

)

has eigenvalues 0 and 1 (assuming θ → pθ

has no stationary points). Finally, g(θ) is covariant, so g is indeed a metric tensor
on the Riemannian manifold pθ. From (2) follows that it is invariant under the
exchange of ρ and τ .

The rho-tau entropy Sρ,τ of the parametric family pθ can be written as

Sρ,τ (pθ) = −
∫

X
dx f(ρ(pθ(x))). (3)

So its second derivative

hij(θ) = −∂i∂jSρ,τ (pθ)

is symmetric in i, j. When positive-definite, h(θ) can also serve as a metric tensor
as is found sometimes in the Physics literature.

Note that h(θ) differs from g(θ) in general: the former is induced by the
entropy function Sρ,τ (p), whose definition depends on the single function f ◦ ρ,
the latter is derived from the function Dρ,τ (p, q).

3 Gauge Freedom

Write the rho-tau metric gij as

gij(θ) =
∫

X
dx

1
φ(pθ)

[

∂ip
θ(x)

] [

∂jp
θ(x)

]

, (4)
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Information Geometry Under Monotone Embedding. Part II: Geometry 3

where φ(u) = 1/(ρ′(u)τ ′(u)). So despite of the two independent choices of embed-
ding functions ρ and τ , the metric tensor gij is determined by one function φ
only. More remarkably,

gij(θ) =
∫

X
dx f ′′(ρ(pθ(x)))

[

∂i(ρ(pθ(x))
] [

∂jρ(pθ(x))
]

=
∫

X
dx (f∗)′′(τ(pθ(x)))

[

∂iτ(pθ(x))
] [

∂jτ(pθ(x))
]

,

so the gauge freedom in gij exists independent of the embedding – there is
freedom in choosing an arbitrary function f in the case of the ρ-embedding and
an arbitrary function f∗ in the case of the τ -embedding of pθ.

Without loss of generality, we choose τ -embedding and denote Xθ(x) =
τ(pθ(x)). From the form of the rho-tau metric

gij(θ) =
∫

X
dx

ρ′(pθ(x))
τ ′(pθ(x))

[

∂iτ(pθ(x))
] [

∂jτ(pθ(x))
]

,

we introduce a bilinear form 〈·, ·〉 defined on pairs of random variables u(x), v(x)

〈u, v〉θ =
∫

X
dx

ρ′(pθ(x))
τ ′(pθ(x))

u(x) v(x).

For any random variable u it holds that

∂j

∫

X
dx ρ(pθ(x))u(x) =

∫

X
dx

ρ′(pθ(x))
τ ′(pθ(x))

∂jτ(pθ(x))u(x) = 〈∂jX
θ, u〉θ

Following [2], ∂jX
θ is then, by definition, tangent to the rho-representation

ρ(pθ) of the model pθ. We also have

− ∂jSρ,τ (pθ) = 〈∂jX
θ,Xθ〉θ. (5)

The difference of the metrics g(θ) and h(θ) can be readily appreciated:

gij(θ) = 〈∂jX
θ, ∂iX

θ〉θ
whereas

hij(θ) = −∂i∂jSρ,τ (pθ) = ∂i〈∂jX
θ,Xθ〉θ

= gij(θ) +
∫

X
dx τ(pθ(x))∂i∂jρ(pθ(x)). (6)

4 The Hessian Case

We now consider the condition under which the rho-tau metric g becomes
Hessian.
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4 J. Naudts and J. Zhang

Theorem 1. Let be given a C∞-manifold of probability distributions pθ. For
fixed strictly increasing functions ρ and τ , let the metric tensor g(θ) be given
by (2). Then the following statements are equivalent:

(i) g is Hessian, i.e., there exists Φ(θ) such that

gij(θ) = ∂i∂jΦ(θ).

(ii) There exists a function V (θ) such that

∂2V

∂θi∂θj
= −

∫

X
dx τ(pθ(x))∂i∂jρ(pθ(x)). (7)

(iii) There exists a function W (θ) such that

∂2W

∂θi∂θj
= −

∫

X
dx ρ(pθ(x))∂i∂jτ(pθ(x)). (8)

(iv) There exist coordinates ηi(θ) for which

gij(θ) = ∂jηi.

(v) There exist coordinates ξi such that

∂jξi(θ) = −
∫

X
dx τ(pθ(x))∂i∂jρ(pθ(x)). (9)

(vi) There exist coordinates ζi such that

∂jζi(θ) = −
∫

X
dx ρ(pθ(x))∂i∂jτ(pθ(x)). (10)

Proof.
(i) ←→ (iv) This is well-known: the existence of a strictly convex function Φ is
equivalent to the existence of dual coordinates ηi.
(ii) ←→ (v) From (ii) to (v): Given the existence of V (θ) satisfying (7), choose
ξi = ∂iV , and (9) is satisfied. From (v) to (ii): Since the right-hand side of (9) is
symmetric with respect to i, j, we have ∂jξi = ∂iξj . Hence there exists a function
V (θ) such that ξi = ∂iV ; this is the V function satisfying (7).
(iii) ←→ (vi) The proof is similar to the previous paragraph, by simply changing
V to W and ξ to ζ.
(i) ←→ (ii) From the identity (6), the existence of Φ(θ) to represent gij as its
second derivatives allows us to choose the function V as V = Φ + S. So from
(i) we obtain (ii). Conversely when the integral term can be represented by the
second derivative of V (θ), we can choose Φ = V −S that would satisfy (6). This
yields (i) from (ii).
(i) ←→ (iii) The proof is similar to that of the previous paragraph, except that
we will invoke the following identity instead of (6):

−∂i∂jS
∗
ρ,τ (pθ) = gij(θ) +

∫

X
dx ρ(pθ(x))∂i∂jτ(pθ(x)).

��
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Information Geometry Under Monotone Embedding. Part II: Geometry 5

The case when g is Hessian is very special, because of the existence of various
bi-orthogonal coordinates.

The ηi are the dual coordinates of the θi. The ζi are called escort coordinates.
They are linked to ηi by

ζi = −
∫

X
dx ρ(pθ(x))∂iτ(pθ(x)) + ηi = ∂iS

∗
ρ,τ (pθ) + ηi. (11)

They satisfy

∂j∂kζi = −〈∂kXθ, ∂i∂jX
θ〉.

The dual escort coordinates ξi are given by

ξj(θ) = ∂jSρ,τ (pθ) + ηj . (12)

The Hessian of the function V (θ), when it does not vanish, causes a discrep-
ancy between a metric tensor h defined as minus the Hessian of the entropy and
the metric tensor g as defined by (2).

5 Zhang’s rho-tau Connections

Given a pair of strictly increasing functions ρ and τ and a model pθ, Zhang
introduced the following connections [3]

Γ
(α)
ij,k =

1 + α

2

∫

X
dx

[

∂i∂jρ(pθ(x))
] [

∂kτ(pθ(x))
]

+
1− α

2

∫

X
dx

[

∂i∂jτ(pθ(x))
] [

∂kρ(pθ(x))
]

,

(13)

where Γ
(α)
ij,k ≡ (Γ (α))l

ijglk. One readily verifies

Γ
(α)
ij,k + Γ

(−α)
jk,i = ∂igjk(θ). (14)

This shows that, by definition, Γ (−α) is the dual connection of Γ (α).
The coefficients of the connection Γ (−1) vanish identically if

∫

X
dx

[

∂i∂jτ(pθ(x))
] [

∂kρ(pθ(x))
]

= 0. (15)

This condition can be written as

∂j∂kζi = −〈∂i∂jX
θ, ∂kXθ〉θ = 0. (16)

It states that the escort coordinates are affine functions of θ and expresses
that the second derivatives ∂i∂jX

θ are orthogonal to the tangent plane of the
statistical manifold. If satisfied then the dual of Γ (−1) satisfies

Γ
(1)
ij,k = ∂igjk(θ). (17)
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6 J. Naudts and J. Zhang

Likewise, the coefficients of the connection Γ (1) vanish identically if
∫

X
dx

[

∂i∂jρ(pθ(x))
] [

∂kτ(pθ(x))
]

= 0. (18)

Proposition 1. With respect to conditions (15) and (18),

1. When (15) holds, the coordinates θi are affine coordinates for Γ (−1); the dual
coordinates ηi are affine coordinates for Γ (1);

2. When (18) holds, the coordinates θi are affine coordinates for Γ (1); the dual
coordinates ηi are affine coordinates for Γ (−1);

3. In either case above, g(θ) is Hessian.

Proof.
One recalls that when Γ = 0 under a coordinate system θ, then θi’s are affine

coordinates – the geodesics are straight lines:

θ(t) = (1− t)θ(t=1) + tθ(t=0).

The geodesics of the dual connection Γ ∗ satisfies the Euler-Lagrange equa-
tions

d2

dt2
θi + Γ i

km

(
d
dt

θk

)(
d
dt

θm

)

= 0. (19)

Its solution is such that the dual coordinates η are affine coordinates:

η(t) = (1− t)η(t=1) + tη(t=0).

For Statement 1, we apply the above knowledge, taking Γ = Γ (−1) and
Γ ∗ = Γ (1); for Statement 2, taking Γ = Γ (1) and Γ ∗ = Γ (−1).

To prove Statement 3 observe that

∂kgij(θ) =
∫

X
dx

[

∂iτ(pθ(x))
]

∂j∂kρ(pθ(x)) +
∫

X
dx

[

∂jρ(pθ(x))
]

∂i∂kτ(pθ(x)).

So the vanishing of either term, i.e., either (15) or (18) holding, will lead
∂kgij(θ) to be symmetric in j, k or in i, k, respectively. This, in conjunction with
the fact that gij is symmetric in i, j, leads to the conclusion that ∂kgij(θ) is
totally symmetric in an exchange of any two of the three indices i, j, k. This
implies that ηi exist for which gij(θ) = ∂jηi. That g is Hessian follows now from
Theorem 1.

��

6 Rho-tau Embedding of phi-exponential Models

Let φ(u) = 1/(ρ′(u)τ ′(u)) as before and fix real random variables F1, F2, · · · , Fn.
These functions determine a phi-exponential family θ → pθ by the relation (see
[4,7,8])

pθ(x) = expφ

[

θkFk(x)− α(θ)
]

. (20)
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Information Geometry Under Monotone Embedding. Part II: Geometry 7

The function α(θ) is determined by the requirement that pθ is a probability
distribution and must be normalized to 1.

Assume that the integral

z(θ) =
∫

X
dxφ(pθ(x))

converges. Then the escort family of probability distributions p̃θ is defined by

p̃θ(x) =
1

z(θ)
φ(pθ(x)).

The corresponding escort expectation is denoted Ẽθ. From the normalization
of the pθ follows that ∂iα(θ) = ẼθFi. Now calculate, starting from (4),

gij(θ) =
∫

X
dx

1
φ(pθ(x))

[

∂ip
θ(x)

] [

∂jp
θ(x)

]

=
∫

X
dxφ(pθ(x)) [Fi − ∂iα(θ)] [Fj − ∂jα(θ)]

= z(θ)
[

ẼθFiFj − ẼθFiẼθFj

]

. (21)

The latter expression is the metric tensor of the phi-exponential model as
introduced in [4]. It implies that the rho-tau metric tensor is conformally equiv-
alent with the metric tensor as derived from the escort expectation of the random
variables Fi.

Finally, let ηi = EθFi. A short calculation shows that

∂jηi =
∫

X
dxφ(pθ(x)) [Fj − ∂jα(θ)] Fi

= z(θ)
[

ẼθFiFj − ẼθFiẼθFj

]

= gij(θ). (22)

By (iv) of Theorem 1 this implies that the metric tensor gij is Hessian. Note
that the ηi are dual coordinates. As defined here, they only depend on φ and not
on the particular choice of embeddings ρ and τ . In particular, also the dually
flat geometry does not depend on it.

One concludes that for any choice of strictly increasing functions ρ(u) and
τ(u) one can always construct statistical models for which the rho-tau metric is
Hessian. These are phi-exponential models, with φ given by φ(u) = 1/ρ′(u)τ ′(u).

Conversely, given a phi-exponential model, its metric tensor is always a rho-
tau metric tensor, with ρ, τ subject to the condition that ρ′(u)τ ′(u) = 1/φ(u).
Two special cases are that either ρ or τ is the identity map, with the other being
identified as the logφ function.

In the terminology of Zhang [3] the models of the phi-exponential family
are called ρ-affine models where the normalization condition is, however, not
imposed.
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8 J. Naudts and J. Zhang

7 Discussion

This paper studies parametrized statistical models pθ and the geometry induced
on them by the choice of a pair of strictly increasing functions ρ and τ .

Theorem 1 gives equivalent conditions for the metric to be Hessian. It is shown
that for the existence of a dually flat geometry the metric has to be Hessian.

The rho-tau metric tensor depends on a single function φ which is defined
by φ(u) = 1/(ρ′(u)τ ′(u)). If the model is phi-exponential for the same function
φ then the rho-tau metric coincides with the metric used in the context of phi-
exponential families and in particular the metric is Hessian. This shows that it
is always possible to construct models which are Hessian for the given rho-tau
metric.

Acknowledgement. The second author is supported by DARPA/ARO Grant
W911NF-16-1-0383.
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