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Abstract. The standard model of information geometry, expressed as
Fisher-Rao metric and Amari-Chensov tensor, reflects an embedding
of probability density by log-transform. The standard embedding was
generalized by one-parametric families of embedding function, such
as α-embedding, q-embedding, κ-embedding. Further generalizations
using arbitrary monotone functions (or positive functions as derivatives)
include the deformed-log embedding (Naudts), U-embedding (Eguchi),
and rho-tau dual embedding (Zhang). Here we demonstrate that the
divergence function under the rho-tau dual embedding degenerates,
upon taking ρ = id, to that under either deformed-log embedding or
U-embedding; hence the latter two give an identical divergence func-
tion. While the rho-tau embedding gives rise to the most general form
of cross-entropy with two free functions, its entropy reduces to that of
deformed entropy of Naudts with only one free function. Fixing the gauge
freedom in rho-tau embedding through normalization of dual-entropy
function renders rho-tau cross-entropy to degenerate to U cross-entropy
of Eguchi, which has the simpler property, not true for general rho-
tau cross-entropy, of reducing to the deformed entropy upon setting the
two pdfs to be equal. In Part I, we investigate monotone embedding in
divergence function, entropy and cross-entropy, whereas in the sequel
(Part II), in induced geometries and probability families. AQ1

Keywords: phi-embedding · U-embedding · rho-tau embedding ·
rho-tau divergence · rho-tau cross-entropy · U cross-entropy · Deformed
entropy · Gauge

1 Introduction: A Plethora of Probability Embeddings

One motivation to study probability embedding functions is to extend the frame-
work of information geometry beyond the now-classic expressions of Fisher-Rao
metric and Amari-Chensov tensor. Realizing that the standard α-geometry is
based on log-embedding of probability functions, various approaches have been

J. Zhang and J. Naudts contributed equally to this paper.

c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 1–11, 2017.
https://doi.org/10.1007/978-3-319-68445-1 24

A
u

th
o

r 
P

ro
o

f



2 J. Zhang and J. Naudts

proposed to generalize such probability embedding, using a one-parameter fam-
ily of specific functions at the first level of generality, and using arbitrarily chosen
(monotone or positive) functions at the second level of generality.

(i). α-embedding. It was Amari [1] who first investigated the one-parameter
family of embeddings logα : R

+ → R defined by

logα(u) =
{

log u α = 1
2

1−α u
(1−α)/2 α �= 1 (1)

Under this α-embedding, α-divergence becomes canonical divergence, and
α-connections have a simple Γ 1, Γ−1-like characteristics [2].

(ii). q-exponential embedding. Tsallis [3], in investigating the equilibrium
distribution of statistical physics which maximizes the Boltzmann-Gibbs-
Shannon entropy under constraints, replaced the entropy function by a
q-dependent entropy, resulting in a deformed version of statistical physics; here,
q ∈ R. The q-logarithmic/exponential functions were introduced [4]:

logq(u) =
1

1 − q

(
u1−q − 1

)
, expq(u) = [1 + (1 − q)u]1/(1−q)

, q �= 1.

Note that q-embedding and α-embedding functions are different: logq(·) �=
logα(·), even after the identification α = 2q−1. Like α-embedding, q-embedding
reduces to the standard logarithm as limq→1.

(iii). κ-exponential embedding. An alternative to the q-deformed exponential
model for statistical physics is the κ-model [5], where

logκ(u) =
1
2κ

(
uκ − u−κ

)
, expκ(u) =

(
κu+

√
1 + κ2u2

) 1
κ

, κ �= 0;

the case of limκ→0 corresponds to the standard exponential/logarithm.

(iv). φ-, U-, and(ρ, τ)-embedding. Generalizing any parametric forms of
embedding functions further leads to the consideration of probability embedding
using arbitrary monotone (or after taking derivative, positive) functions. The
prominent inventions are Naudts’ phi-embedding [7], Eguchi’s U-embedding [8],
and Zhang’s rho-tau embedding [6], though they have been re-invented/renamed
by later authors, causing confusion and distraction. We discuss these in the next
section.

Below we first review the deformed logarithm, logφ, and deformed exponen-
tial, expφ, functions. Then we point out that logφ and expφ are nothing but an
arbitrary pair of mutually inverse monotone functions, and are representable as
derivatives of a pair of conjugate convex functions f, f∗. The deformed diver-
gence Dφ(p, q) is then precisely the Bregman divergence Df (p, q) associated
with f . The construction of entropy and cross-entropy from this deformed app-
roach is reviewed, as well as their construction from the U-embedding. Then, we
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Information Geometry Under Monotone Embedding 3

review the rho-tau embedding, which provides two independently chosen embed-
ding functions, and explicitly identify its entropy and cross-entropy. Our Main
Theorem shows that the divergence function and entropy function of the rho-
tau embedding reduce as a special case to those given by the phi-embedding and
U-embedding, while the rho-tau cross-entropy reduces as another special case to
the U cross-entropy.

2 Deformation Versus Embedding

2.1 “Deforming” Exponential and Logarithmic Functions

Naudts [7,9] defines the phi-deformed logarithm

logφ(u) =
∫ u

1

1
φ(v)

dv.

Here, φ(v) is a strictly positive function. In the context of discrete probabilities
it suffices that it is strictly positive on the open interval (0, 1), possibly vanishing
at the end points. In the case of a probability density function it is assumed to
be strictly positive on the interval (0,+∞). Note that by construction one has
logφ(1) = 0. The inverse of the phi-logarithm is denoted expφ(u), and called
phi-exponential function:

expφ(logφ(u)) = logφ(expφ(u)) = u.

The phi-exponential has an integral expression

expφ(u) = 1 +
∫ u

0

dv ψ(v),

where the function ψ(u) is given by

ψ(u) =
d
du

expφ(u) =
d
du

(logφ)−1(u).

In terms of φ, ψ, we have the following relations:

ψ(u) = φ(expφ(u)),
φ(u) = ψ(logφ(u)).

We want to stress that all four functions, φ, ψ, logφ, expφ, arise out of choosing
one positive-valued function φ.

As examples, φ(v) = v gives rise to the classic natural logarithm and expo-
nential. Taking φ(u) = u

1+u in [13] leads to logφ(u) = u − 1 + log(u). Taking
φ(u) = u(1 + εu) in [14] leads to

log
(

(1 + ε)u
1 + εu

)
, expφ(u) =

1
(1 + ε)e−v − ε

.
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4 J. Zhang and J. Naudts

2.2 Deformed Entropy and Deformed Divergence Functions

The phi-entropy of the probability distribution p is defined by [9]

Sφ(p) = −Ep logφ p+
∫

X
dx

∫ p(x)

0

du
u

φ(u)
+ constant. (2)

By partial integration one obtains an equivalent expression

Sφ(p) = −
∫

X
dx

∫ p(x)

1

du logφ(u) + constant. (3)

For standard logarithm φ(u) = u, the above expression is the well-known entropy
of Boltzmann-Gibbs-Shannon

S(p) = −Ep log p.

The phi-divergence of two probability functions p and q is defined by [9]

Dφ(p, q) =
∫

X
dx

∫ p(x)

q(x)

dv
[
logφ(v) − logφ(q(x))

]
, (4)

which has another equivalent expression

Dφ(p, q) = Sφ(q) − Sφ(p) −
∫

X
dx [p(x) − q(x)] logφ(q(x)). (5)

Now let us express these quantities in terms of a strictly convex function f ,
satisfying f ′(u) = logφ(u). We have:

Sφ(p) = −
∫

X
dx f(p(x)) + constant, (6)

Dφ(p, q) =
∫

X
dx {f(p(x)) − f(q(x)) − [p(x) − q(x)]f ′(q(x))} . (7)

One can readily recognize that Dφ(p, q) is nothing but the Bregman divergence,
whereas the function f itself determines the deformed entropy Sφ(p). Note that
p �→ Sφ(p) is strictly concave while the map p �→ Dφ(p, q) is strictly convex.

2.3 U-embedding

Eguchi [8] introduces the U-embedding, which is essentially the Bregman diver-
gence under a strictly convex function U coupled with an embedding using
ψ = (U ′)−1. The U cross-entropy CU (p, q) is defined as:

CU (p, q) =
∫

X
dx {U(ψ(q(x))) − p(x) · ψ(q(x))} , (8)
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Information Geometry Under Monotone Embedding 5

whereas the U entropy HU is defined as HU (p) = CU (p, p). The U -divergence is

DU (p, q) = CU (p, q) −HU (p, p)

=
∫

X
dx

{
U (ψ(q(x))) − U (ψ(p(x))) − p(x) [(ψ(q(x)) − ψ(p(x))]

}
. (9)

Note that the U-embedding only has one arbitrarily chosen function, as does
phi-embedding.

2.4 Dual rho-tau Embedding

In contrast with the “single function” embedding of the phi-model and the U-
model, Zhang’s (2004) rho-tau framework uses two arbitrarily and independently
chosen monotone functions. He starts with the observation that a pair of mutu-
ally inverse functions occurs naturally in the context of convex duality. Indeed,
if f is strictly convex and f∗ is its convex dual then the derivatives f ′ and (f∗)′

are inverse functions of each other:

f ′ ◦ (f∗)′(u) = (f∗)′ ◦ f ′(u) = u.

Here the definition of the convex dual f∗ of f is:

f∗(u) = sup{uv − f(v)}.
For u in the range of f ′ it is given by

f∗(u) = u(f ′)−1(u) − f ◦ (f ′)−1(u).

Take the derivative of this expression to find (f∗)′ ◦f ′(u) = u. By convex duality
then follows that also f ′ ◦ (f∗)′(u) = u. Take an additional derivative to obtain

f ′′((f∗)′(u)) · (f∗)′′(u) = (f∗)′′(f ′(u)) · f ′′(u) = 1. (10)

This identity will be used further on.

Consider now a pair (ρ(·), τ(·)) of strictly increasing functions. Then there
exists a strictly convex function f(·) satisfying f ′(u) = τ ◦ρ−1(u). This is because
the family of strictly increasing functions form a group, with function composi-
tion as group operation, an observation made in [6,12]. In terms of the conjugate
function f∗, the relation is (f∗)′(u) = ρ ◦ τ−1(u). The derivatives of f(u) and of
its conjugate f∗(u) have the property that

f ′(ρ(u)) = τ(u) and (f∗)′(τ(u)) = ρ(u). (11)

Among the triple (f, ρ, τ), given any two functions, the third is specified. When
we arbitrarily choose two strictly increasing functions ρ and τ as embedding
functions, then they are automatically linked by a pair of conjugated convex
functions f, f∗. On the other hand, we may also independently choose to specify

A
u

th
o

r 
P

ro
o

f



6 J. Zhang and J. Naudts

(ρ, f), (ρ, f∗), (τ, f), or (τ, f∗), with the others being fixed. Therefore, rho-tau
embedding is a mechanism with two independently chosen functions; this differs
from both the phi-embedding and the U-embedding. The following identities will
be useful:

f ′′(ρ(u)) ρ′(u) = τ ′(u) , (f∗)′′(τ(u)) τ ′(u) = ρ′(u) , (12)

f ′′(ρ(u)) (ρ′(u))2 = (f∗)′′(τ(u)) (τ ′(u))2 , (13)

f ′′(ρ(u)) (f∗)′′(τ(u)) = 1. (14)

2.5 Divergence of the rho-tau Embedding

Zhang (2004) introduces1 the rho-tau divergence (see Proposition 6 of [6])

Dρ,τ (p, q) =
∫

X
dx {f(ρ(p(x))) + f∗(τ(q(x))) − ρ(p(x))τ(q(x))} , (15)

where f is a strictly convex function satisfying f ′(ρ(u)) = τ(u).

Lemma 1. Expression (15) can be written as

Dρ,τ (p, q) =
∫

X
dx

{
f(ρ(p(x))) − f(ρ(q(x))) − [ρ(p(x)) − ρ(q(x))]τ(q(x))

}

=
∫

X
dx

∫ p(x)

q(x)

[τ(v) − τ(q(x))] dρ(v)

=
∫

X
dx

∫ ρ(p(x))

ρ(q(x))

du [f ′(u) − f ′(ρ(q(x)))] . (16)

In particular this implies that Dρ,τ (p, q) ≥ 0, with equality if and only if p = q.
We note the following identity:

f(ρ(p(x))) − ρ(p(x))τ(p(x)) + f∗(τ(p(x))) = 0. (17)

The “reference-representation biduality” [6,10,12] reveals as

Dρ,τ (p, q) = Dτ,ρ(q, p).

1 The original definition as found in [6,12] uses the notation Df,ρ(p, q) and treats f
and ρ as independent. In the present definition Dρ,τ (p, q) the definition of f depends
on ρ, τ . The difference in only notational and inconsequential.
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Information Geometry Under Monotone Embedding 7

2.6 Entropy and Cross-Entropy of rho-tau Embedding

It is now obvious to give the following definition of the rho-tau entropy

Sρ,τ (p) = −
∫

X
dx f(ρ(p(x))), (18)

where f(u) is a strictly convex function satisfying f ′(u) = τ ◦ ρ−1(u). This can
be written as

Sρ,τ (p) = −
∫

X
dx

∫ ρ(p(x))

f ′(v)dv + constant

= −
∫

X
dx

∫ p(x)

τ(u)dρ(u) + constant. (19)

Note that the rho-tau entropy Sρ,τ (p) is concave in ρ(p), but not necessarily
in p. This has consequences further on. We likewise define rho-tau cross-entropy

Cρ,τ (p, q) = −
∫

X
dx ρ(p(x))τ(q(x))

with Cρ,τ (p, q) = Cτ,ρ(q, p).

The rho-tau divergence can then be given by

Dρ,τ (p, q) = Sρ,τ (q) − Sρ,τ (p) −
∫

X
dx [ρ(p(x)) − ρ(q(x))]τ(q(x)).

= [Sρ,τ (q) − Cρ,τ (q, q)] − [Sρ,τ (p) − Cρ,τ (p, q)]

Note that in general Sρ,τ (q) �= Cρ,τ (q, q); this is because

Sρ,τ (p) − Cρ,τ (p, p) =
∫

X
dx f∗(τ(p(x))).

So unless f(u) = cu for constant c, f∗ would not vanish. In fact, denote

S∗
ρ,τ (p) = −

∫
X

dx f∗(τ(p(x))). (20)

Then S∗
ρ,τ (p) = Sτ,ρ(p), and

Sρ,τ (p) − Cρ,τ (p, p) + S∗
ρ,τ (p) = 0 (21)

which is, after integrating
∫

X dx, a re-write of (17). Therefore,

Dρ,τ (p, q) = Sρ,τ (p) − Cρ,τ (p, q) + S∗
ρ,τ (q). (22)

Because Dρ,τ (p, q) is non-negative and vanishes if and only if p = q, the
function p �→ Sρ,τ (p) − Cρ,τ (p, q) has its unique maximum at p = q. Therefore,
minimizing p �→ Dρ,τ (p, q) is equivalent with maximizing p �→ Sρ,τ (p)−Cρ,τ (p, q).
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8 J. Zhang and J. Naudts

2.7 Gauge Freedom of the rho-tau Embedding

Because rho-tau embedding has the freedom of two functions, it reduces to the
single-function embeddings (either phi- or U-embedding) upon fixing one embed-
ding function.

Divergence. In the phi-embedding, Expression (15) of Dρ,τ (p, q) reduces to the
phi-divergence Dφ(p, q) for instance if ρ = id, the identity function; in this case,
τ(u) = logφ(u) = f ′(u).

The U-embedding is also a special case of the rho-tau embedding, with ρ = id
identification: U = f∗, τ = (U ′)−1 = f ′. So phi-divergence (7) and U -divergence
(9) are identical. U- and phi-embedding are the same, with U ′ = expφ, as noted
in [11].

Entropy. By virtue of gauge selection ρ = id in the rho-tau embedding, any
phi-deformed entropy (3) is a special case of rho-tau entropy (18)

Sρ,τ (p) = Sφ(ρ(p)).

On the other hand, though the rho-tau entropy (18) has two free functions in
appearance, it is the result of their function composition that matters. So any
rho-tau entropy is also a phi-entropy for a well-chosen φ.

The situation with the U-embedding is the same, because U -entropy is iden-
tical with phi-entropy:

HU (p) =
∫

X
dx

[
U((U ′)−1(p(x))) − p(x) · (U ′)−1(p(x))

]

=
∫

X
dx [f∗(f ′(p(x))) − p(x) · f ′(p(x))] = −

∫
X

dxf(p(x)) = Sφ(p).

Cross-entropy. The rho-tau embedding identifies Cρ,τ (p, q) as the cross-entropy
with a dual embedding mechanism, one free function for each of the p, q. In this
most general form, however, we do not require that Cρ,τ (p, q) reduce to either
Sρ,τ (p) or S∗

ρ,τ (p) ≡ Sτ,ρ(p) when p = q. This is different from the approach of the
U-embedding, where its cross-entropy CU (p, q) is such that CU (p, p) = HU (p).
It turns out that CU (p, q) given by (8) equals the rho-tau cross-entropy minus
the dual rho-tau entropy (after adopting the ρ = id gauge):

Cρ,τ (p, q) − S∗
ρ,τ (q) = CU (p, q). (23)

Below, we extend Eguchi’s definition of U cross-entropy by removing the ρ = id
restriction. In other words, we can call the left-hand side of (23) U cross-entropy,
which depends on two free functions ρ, τ , and obtain from (22)

Dρ,τ = CU (p, q) − CU (p, p).
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Information Geometry Under Monotone Embedding 9

2.8 The Normalization Gauge

Let us fix the gauge by f∗ = τ−1. In this case,
∫

X dx f∗(τ(p(x))) =
∫

X p(x)dx =
1, so S∗

ρ,τ (p) = S∗
ρ,τ (q) = −1.

Adopting the f∗ = τ−1 gauge (we call this “normalization gauge”) implies
that

ρ(p) = (f∗)′(τ(p)) = (τ−1)′(τ(p)) =
1

τ ′(p)
.

So the transformation

λ : τ(·) −→ 1
τ ′(·) ≡ (τ−1)′(τ(·))

reflects a transformation of embedding functions. In the phi-embedding lan-
guage, τ → ρ is simply logφ → φ, or the phi-exponentiation operation.
This transformation is important in studying phi-exponential family of pdfs
(Part II).

Fixing the gauge freedom by normalization simplifies the form of Dρ,τ . Mak-
ing use of (21), with S∗ = const, implies that the rho-tau cross-entropy Cρ,τ and
U cross-entropy CU (ρ, τ), as given by left-hand side of (23), are equal and are
denoted C0:

C0(p, q) = −
∫

X
dx ρ(p(x)) · τ(q(x)) = −

∫
X

dx (τ−1)′(τ(p(x))) · τ(q(x))

or, in terms of deformed-logarithm notation,

C0(p, q) = −
∫

X
dx ρ(p(x)) logρ(q(x)).

Then
H0(p) ≡ C0(p, p) = −

∫
X

dx ρ(p(x)) logρ(p(x)),

with

D0(p, q) = C0(p, q) − C0(p, p)

=
∫

X
dx ρ(p(x)) · (logρ(p(x)) − logρ(q(x)))

=
∫

X
dx

1
τ ′(p(x))

(τ(p(x)) − τ(q(x))). (24)

Note that D0 �= Dφ; they both degenerate from Dρ,τ under different gauges.

We summarize the above conclusions in the following theorem:

Theorem 1. The (ρ, τ) embedding reduces to special cases upon fixing the gauge
as:
(i) ρ = id: rho-tau divergence Dρ,τ reduces to deformed phi-divergence Dφ with

τ = f ′ = logφ, and to U -divergence DU with U = f∗ and τ = f ′ = (U ′)−1;
(ii) f∗ = τ−1: rho-tau cross-entropy Cρ,τ reduces to U -cross-entropy as rede-

fined in (23). In this case, ρ = φ, τ = logφ, i.e., τ → ρ = (τ−1)′ ◦ τ ≡ 1/τ ′

is taking phi-exponentiation operation;
(iii) ρ = τ : rho-tau divergence Dρ,τ becomes

∫
dx(ρ(p(x)) − ρ(q(x)))2/2.
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10 J. Zhang and J. Naudts

3 Discussion

The main thesis of our paper is that the divergence function Dρ,τ constructed
from (ρ, τ)-embedding subsumes both the phi-divergence Dφ constructed from
the deformed-log embedding and the U -divergence constructed from the U-
embedding. A highlight of our analysis is that the rho-tau divergence Dρ,τ

provides a clear distinction between entropy and cross-entropy as two distinct
quantities without requiring the latter to degenerate to the former. This is sig-
nificant in terms of the resulting geometry generated by these two quantities
(see Part II).

On the other hand, upon fixing the gauge f∗ = τ−1 (normalization gauge)
renders the rho-tau cross-entropy to be U cross-entropy, where the dual-entropy
is constant. In this case, τ ↔ ρ is akin to logφ ↔ φ transformation encountered
in studying normalization of phi-exponential family. A thorough discussion of the
geometries induced from the rho-tau divergence and from the phi-exponential
family will be given in Part II.

Acknowledgement. The first author is supported by DARPA/ARO Grant W911NF-
16-1-0383.
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