Metadata of the chapter that will be visualized in SpringerLink

Book Title	Geometric Science of Information	
Series Title		
Chapter Title	(Para-)Holomorphic Connections for Information Geometry	
Copyright Year	2017	
Copyright HolderName	Springer International Publishing AG	
Author	Family Name	Grigorian
	Particle	
	Given Name	Sergey
	Prefix	
	Suffix	
	Division	
	Organization	University of Texas Rio Grande Valley
	Address	Edinburg, TX, 78539, USA
	Email	sergey.grigorian@utrgv.edu
Corresponding Author	Family Name	Zhang
	Particle	
	Given Name	Jun
	Prefix	
	Suffix	
	Division	
	Organization	University of Michigan
	Address	Ann Arbor, MI, 48109, USA
	Email	junz@umich.edu
Abstract	On a statistical manifold (M, g, ∇) , the Riemannian metric g is coupled to an (torsion-free) affine connection ∇ , such that ∇g is totally symmetric; $\{\nabla, g\}$ is said to form "Codazzi coupling". This leads ∇^* , the g -conjugate of ∇ , to have same torsion as that of ∇ . In this paper, we investigate how statistical structure interacts with L in an almost Hermitian and almost para-Hermitian manifold (M, g, L) , where L denotes, respectively, an almost complex structure J with $J^2 = -\mathrm{id}$ or an almost para-complex structure K with $K^2 = \mathrm{id}$. Starting with ∇^L , the L -conjugate of ∇ , we investigate the interaction of (generally torsion-admitting) ∇ with L , and derive a necessary and sufficient condition (called "Torsion Balancing" condition) for L to be integrable, hence making (M, g, L) (para-)Hermitian, and for ∇ to be (para-)holomorphic. We further derive that ∇^L is (para-)holomorphic if and only if ∇ is, and that ∇^* is (para-)holomorphic if and only if ∇ is (para-)holomorphic and Codazzi coupled to g . Our investigations provide concise conditions to extend statistical manifolds to (para-)Hermitian manifolds.	

(Para-)Holomorphic Connections for Information Geometry

Sergey Grigorian¹ and Jun Zhang^{$2(\boxtimes)$}

¹ University of Texas Rio Grande Valley, Edinburg, TX 78539, USA sergey.grigorian@utrgv.edu
² University of Michigan, Ann Arbor, MI 48109, USA junz@umich.edu

Abstract. On a statistical manifold (M, g, ∇) , the Riemannian metric g is coupled to an (torsion-free) affine connection ∇ , such that ∇g is totally symmetric; $\{\nabla, g\}$ is said to form "Codazzi coupling". This leads ∇^* , the q -conjugate of ∇ , to have same torsion as that of ∇ . In this paper, we investigate how statistical structure interacts with L in an almost Hermitian and almost para-Hermitian manifold (M, q, L), where L denotes, respectively, an almost complex structure J with $J^2 = -id$ or an almost para-complex structure K with $K^2 = id$. Starting with ∇^L , the L -conjugate of ∇ , we investigate the interaction of (generally torsion-admitting) ∇ with L, and derive a necessary and sufficient condition (called "Torsion Balancing" condition) for L to be integrable, hence making (M, g, L) (para-)Hermitian, and for ∇ to be (para-)holomorphic. We further derive that ∇^L is (para-)holomorphic if and only if ∇ is, and that ∇^* is (para-)holomorphic if and only if ∇ is (para-)holomorphic and Codazzi coupled to q. Our investigations provide concise conditions to extend statistical manifolds to (para-)Hermitian manifolds.

1 Introduction

On the tangent bundle TM of a differentiable manifold M, one can introduce two separate structures: affine connection ∇ and pseudo-Riemannian metric g. A manifold M equipped with a g and a torsion-free connection ∇ is called a *statistical manifold* if (g, ∇) is Codazzi-coupled [Lau87]. This is the setting of "classical" information geometry, where the (g, ∇) pair arises from a general construction of divergence ("contrast") functions. To accommodate for torsions in affine connections, the concept of pre-contrast functions was introduced [HM11]. Codazzi coupling has been traditionally studied by affine geometers [NS94,Sim00]. The robustness of Codazzi coupling was investigated by perturbing both the metric and the affine connection [SSS09] and by its interaction with other transformations of connection [TZ16]. Below, we provide a succinct overview.

1.1 g-conjugate Connection, Cubic Form, and Codazzi Coupling

Given the pair (g, ∇) , we construct the (0, 3)-tensor C by

$$C(X,Y,Z) := (\nabla_Z g)(X,Y) = Zg(X,Y) - g(\nabla_Z X,Y) - g(X,\nabla_Z Y). \tag{1}$$

AQ1

[©] Springer International Publishing AG 2017

F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 1–9, 2017. https://doi.org/10.1007/978-3-319-68445-1_22

The tensor C is sometimes referred to as the *cubic form* associated to the pair (∇, g) . When C = 0, we say g is parallel under ∇ .

Given the pair (g, ∇) , we can also construct ∇^* , called g -conjugate connection, by

$$Zg(X,Y) = g(\nabla_Z X, Y) + g(X, \nabla_Z^* Y). \tag{2}$$

It can be checked easily that (i) ∇^* is indeed a connection and (ii) g-conjugation of a connection is involutive, i.e., $(\nabla^*)^* = \nabla$.

These two constructions from an arbitrary (q, ∇) pair are related via

$$C(X,Y,Z) = g(X,(\nabla^* - \nabla)_Z Y), \tag{3}$$

so that

$$C^*(X, Y, Z) := (\nabla_Z^* g)(X, Y) = -C(X, Y, Z).$$

Therefore $C(X,Y,Z) = C^*(X,Y,Z) = 0$ if and only if $\nabla^* = \nabla$, that is, ∇ is g-self-conjugate. A connection is both g-self-conjugate and torsion-free defines what is called the Levi-Civita connection ∇^{LC} associated to g.

Simple calculation reveals that

$$C(X,Y,Z) - C(Z,Y,X) = (\nabla_Z g)(X,Y) - (\nabla_X g)(Z,Y), C(X,Y,Z) - C(X,Z,Y) = g(X,T^{\nabla^*}(Z,Y) - T^{\nabla}(Z,Y)),$$
(4)

where T^{∇} denotes the torsion of ∇

$$T^{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y].$$

Note that C(X,Y,Z) = C(Y,X,Z) always holds, due to g(X,Y) = g(Y,X). Therefore, imposing either of the following is equivalent:

- 1. C(X, Y, Z) = C(Z, Y, X),
- 2. C(X, Y, Z) = C(X, Z, Y);

this is because either (i) or (ii) will make C totally symmetric in all of its indices. In the case of (i), we say that g and ∇ are Codazzi-coupled:

$$(\nabla_Z g)(X, Y) = (\nabla_X g)(Z, Y). \tag{5}$$

In the case of (ii), ∇ and ∇^* have same torsion. These well-known facts are summarized in the following Lemma.

Lemma 1. Let g be a pseudo-Riemannian metric, ∇ an arbitrary affine connection, and ∇^* be the g-conjugate connection of ∇ . Then the following statements are equivalent:

- 1. (∇, g) is Codazzi-coupled;
- 2. (∇^*, g) is Codazzi-coupled;
- 3. C is totally symmetric;
- 4. C^* is totally symmetric;
- 5. $T^{\nabla} = T^{\nabla^*}$.

In the above case, (g, ∇, ∇^*) is called a *Codazzi triple*. Codazzi-coupling between g and ∇ or, equivalently, the existence of Codazzi triple (g, ∇, ∇^*) is the key feature of a statistical manifold. In "quantum" information geometry, ∇ is allowed to carry torsion, and [Mat13] introduced *Statistical Manifold Admitting Torsion (SMAT)* as a manifold (M, g, ∇) satisfying

$$(\nabla_Y g)(X, Z) - (\nabla_X g)(Y, Z) = g(T^{\nabla}(X, Y), Z).$$

Note that ∇^* is torsion-free if and only if (M, g, ∇) is a SMAT. However, in a SMAT, neither ∇ nor ∇^* is Codazzi coupled to g; the deviation from Codazzi coupling is measured by the torsion T^{∇} of ∇ .

2 Structure of TM Arising from L

A tangent bundle isomorphism L may induce a splitting of TM, corresponding to the eigenbundles associated with the eigenvalues of L. How the action of an arbitrary connection ∇ respects such splitting is the focus of our current paper.

2.1 Splitting of TM by L

For a smooth manifold M, an isomorphism L of the tangent bundle TM is a smooth section of the bundle $\operatorname{End}(TM)$ such that it is invertible everywhere. By definition, L is called an almost complex structure if $L^2 = -\operatorname{id}$, or an almost para-complex structure if $L^2 = \operatorname{id}$ and the multiplicities of the eigenvalues ± 1 are equal. We will use J and K to denote almost complex structures and almost para-complex structures, respectively, and use L when these two structures can be treated in a unified way. It is clear from our definition that such structures exist only when M is of even dimension.

Denote eigenvalues of L as $\pm \alpha$, where $\alpha = 1$ for L = K and $\alpha = i$ for L = J, respectively. Following the standard procedure, we (para-)complexify TM by tensoring with $\mathbb C$ or para-complex (also known as split-complex) field $\mathbb D$, and use T^LM to denote the resulting $TM \otimes \mathbb C$ or $TM \otimes \mathbb D$, depending on the type of L. In analogy with standard notation in the complex case, let $T^{(1,0)}M$ and $T^{(0,1)}M$ be the eigenbundles of L corresponding to the eigenvalues $\pm \alpha$, i.e., at each point $p \in M$, the fiber is defined by

$$T^{(1,0)}(p) := \{ X \in T_p^L M : L_p(X) = \alpha X \} ,$$

$$T^{(0,1)}(p) := \{ X \in T_p^L M : L_p(X) = -\alpha X \} .$$

As sub-bundles of the (para-)complexified tangent bundle T^LM , $T^{(1,0)}M$ and $T^{(0,1)}M$ are distributions. A distribution is called a foliation if it is closed under the bracket $[\cdot,\cdot]$. We will refer to vectors to be of type (1,0) and (0,1) if they take values in $T^{(1,0)}M$ and $T^{(0,1)}M$ respectively. Moreover, define $\pi^{(1,0)}$ and $\pi^{(0,1)}$ to be the projections of a vector field to $T^{(1,0)}M$ and $T^{(0,1)}M$ respectively.

The Nijenhuis tensor N_L associated with L is defined as

$$N_L(X,Y) = -L^2[X,Y] + L[X,LY] + L[LX,Y] - [LX,LY].$$
(6)

When $N_L = 0$, the operator L is said to be integrable. It is well-known that both $T^{(1,0)}M$ and $T^{(0,1)}M$ are foliations if and only if L is integrable, i.e., the integrability condition $N_L = 0$ is satisfied.

L-conjugate of ∇ 2.2

Starting from a (not necessarily torsion-free) connection ∇ operating on sections of TM, we can apply an L-conjugate transformation to obtain a new connection $\nabla^L := L^{-1} \nabla L$, or

$$\nabla_X^L Y = L^{-1}(\nabla_X(LY)) \tag{7}$$

for any vector fields X and Y; here L^{-1} denotes the inverse isomorphism of L. It can be verified that indeed ∇^L is an affine connection.

Define a (1, 2)-tensor (vector-valued bilinear form) S via the expression

$$S(X,Y) = (\nabla_X L)Y - (\nabla_Y L)X,\tag{8}$$

where

$$(\nabla_X L)Y = \nabla_X (LY) - L(\nabla_X Y).$$

We say that L and ∇ are Codazzi-coupled if S=0. The following is known.

Lemma 2 (e.g., [SSS09]). Let ∇ be an affine connection, and let L be an arbitrary tangent bundle isomorphism. Then the following statements are equivalent:

- (i) (∇, L) is Codazzi-coupled.
- (ii) $T^{\nabla}(X,Y) = T^{\nabla^L}(X,Y)$. (iii) (∇^L, L^{-1}) is Codazzi-coupled.

Lemma 3. For the special case of (para-)complex operators $L^2 = \pm id$.

- 1. $\nabla^L = \nabla^{L^{-1}}$, i.e., L-conjugate transformation is involutive, $(\nabla^L)^L = \nabla$.
- 2. (∇, L) is Codazzi-coupled if and only if (∇^L, L) is Codazzi-coupled.

As an affine connection, ∇ gives rise to a map

$$\nabla: \Omega^0(TM) \to \Omega^1(TM),$$

where $\Omega^{i}(TM)$ is the space of smooth i-forms with value in TM. We may extend this to a map

$$d^{\nabla}: \Omega^i(TM) \to \Omega^{i+1}(TM)$$

by

$$d^{\nabla}(\alpha \otimes v) = d\alpha \times v + (-1)^{i}\alpha \wedge \nabla v$$

for any *i*-form α and vector field v. In the case that ∇ is flat, then $(d^{\nabla})^2 = 0$ and we get a chain complex whose cohomology is the de Rham cohomology twisted by the local system determined by ∇ . Regarding L as an element of $\Omega^1(TM)$, it is easy to check using local coordinates that

$$(d^{\nabla}L)(X,Y) = (\nabla_X L)Y - (\nabla_Y L)X + LT^{\nabla}(X,Y). \tag{9}$$

Therefore, Codazzi coupling of ∇ and L can also be expressed as

$$(d^{\nabla}L)(X,Y) = T^{\nabla}(LX,Y). \tag{10}$$

2.3 Integrability of L

In [FZ17, Lemma 2.5] an expression for $N_L(X,Y)$ in terms of T^{∇} has been derived assuming S=0. Using exactly the same procedure, we can write down $N_L(X,Y)$ for an arbitrary S.

Lemma 4. Given a connection ∇ with torsion T^{∇} , the Nijenhuis tensor N_L of a (para-)complex operator L is given by

$$N_L(X,Y) = L^2 T^{\nabla}(X,Y) - L T^{\nabla}(X,LY) - L T^{\nabla}(LX,Y) + T^{\nabla}(LX,LY)$$

+ $LS(X,Y) - L^{-1}S(LY,LX)$.

Now, define θ to be

$$\theta(X,Y) = \frac{1}{2}(\nabla_X^L Y - \nabla_X Y) = \frac{1}{2}L^{-1}(\nabla_X L)Y.$$
 (11)

with

$$L\theta(X,Y) + \theta(X,LY) = 0. \tag{12}$$

In particular, we see that

$$\frac{1}{2}L^{-1}\left(S\left(X,Y\right)\right) = \theta\left(X,Y\right) - \theta\left(Y,X\right),$$

and therefore, θ is symmetric if and only if L and ∇ are Codazzi-coupled. Introduce

 $\tilde{\nabla} = \frac{1}{2}(\nabla + \nabla^L),$

which satisfies

$$\tilde{\nabla}L\equiv0.$$

A connection with respect to which L is parallel is called (para-)complex connection, and in particular, such a connection preserves the decomposition $T^LM \cong T^{(1,0)}M \oplus T^{(0,1)}M$. So starting from any connection ∇ , we can construct its conjugate ∇^L , the average of which is the (para-)complex connection $\tilde{\nabla}$. This situation mirrors the relationship between Levi-Civita connection and the pair of g-conjugate connections ∇, ∇^* . Note that we can also write $\nabla = \tilde{\nabla} - \theta$ and $\nabla^L = \tilde{\nabla} + \theta$, so the quantity θ measures the failure of both ∇ and ∇^L to be a (para-)complex connection.

3 (Para-)Holomorphicity of ∇ Associated to L

3.1 (Para-)Holomorphic Connections

The (para-)Dolbeault operator $\bar{\partial}$ for a given L on T^LM is defined as

$$\bar{\partial}_X Y = \frac{1}{4} \left([X, Y] - L^2 [LX, LY] - L^{-1} [LX, Y] + L^{-1} [X, LY] \right)$$
 (13)

for any vector fields X and Y. It can be checked easily that this expression is tensorial in X, that is $\bar{\partial}_{fX}Y = f(\bar{\partial}_XY)$ and is a derivation. In the case when L=J, this defines the holomorphic structure on $T^{\mathbb{C}}M$ and locally defines the differentiation of vector fields of type (1,0) with respect to the anti-holomorphic coordinates $\frac{\partial}{\partial z^i}$. Similarly for para-holomorphic structure on $T^{\mathbb{D}}M$ when L=K. From (13) we obtain that if X and Y are of the same type, then $\bar{\partial}_X Y = 0$.

However, if $Y \in T^{(1,0)}M$ and $X \in T^{(0,1)}M$, then

$$\bar{\partial}_X Y = \pi^{(1,0)} \left[X, Y \right] \tag{14}$$

and similarly $\bar{\partial}_X Y = \pi^{(0,1)}[X,Y]$ if $Y \in T^{(0,1)}M$ and $X \in T^{(1,0)}M$. Equivalently, note that if $X \in T^{(1,0)}M$, then $\bar{\partial}X$ is a vector-valued 1-form, of type (1,0) as a vector and type (0,1) as a 1-form, and conversely if $X \in T^{(0,1)}M$.

Given a connection ∇ operating on T^LM , we can ask the question whether ∇ is compatible with $\bar{\partial}$. To understand this we may define an alternative operator $\bar{\partial}^{\nabla}$, which for $Y \in T^{(1,0)}M$ is defined as taking the (0,1)-part of the vectorvalued 1-form ∇Y (and conversely on $T^{(0,1)}M$). This can be expressed as

$$\bar{\partial}_X^{\nabla} Y = \frac{1}{2} \left(\nabla_X Y - \nabla_{LX} \left(L^{-1} Y \right) \right) \tag{15}$$

for any vector fields X and Y in T^LM . Clearly, $\bar{\partial}_X^{\nabla}Y = 0$ if X and Y are of the same type and is just $\nabla_X Y$ if X and Y are of opposite type. On a (para-)holomorphic vector bundle, a connection is said to be (para)-holomorphic if these two Dolbeault operators coincide. We extend this notion to arbitrary connections on $T^LM \cong T^{(1,0)}M \oplus T^{(0,1)}M$ (that do not necessarily preserve $T^{(1,0)}M$ and $T^{(0,1)}M$) – we say a connection ∇ is (para-)holomorphic if $\bar{\partial}_{Y}^{\nabla}Y=$ $\bar{\partial}_X Y$ for any vector fields X and Y.

It can be readily shown that

Theorem 1. ∇^L is (para-)holomorphic if and only if ∇ is (para-)holomorphic.

Theorem 2. When ∇ is (para-)holomorphic, the quantity $\theta(X,Y)$ satisfies:

$$L\theta(X,Y) = -\theta(X,LY) = -\theta(LX,Y) = L^{-1}\theta(LX,LY). \tag{16}$$

Theorem 2 shows that $\theta(X,Y)$ vanishes whenever X and Y are of different types. Moreover, if X and Y are both of type (1,0), $\theta(X,Y)$ is of type (0,1), and vice versa.

Using (13) and (15), we can also prove

Lemma 5. Given an arbitrary connection ∇ and an L on a manifold, the connection ∇ is (para-)holomorphic if and only if

$$S(X,Y) = T^{\nabla}(LX,Y) - LT^{\nabla}(X,Y) - \frac{1}{2}L^{2}N_{L}(LX,Y).$$
 (17)

From this, we prove the main theorem of our paper.

Theorem 3. Given the an arbitrary pair (∇, L) on a manifold, the connection ∇ is (para-)holomorphic and L is integrable if and only if

$$S(X,Y) = T^{\nabla}(LX,Y) - LT^{\nabla}(X,Y). \tag{18}$$

The significance of Theorem 3 is that this gives us a generalization of the Codazzi coupling condition for L that was used in [FZ17] in the case $T^{\nabla} = 0$. In fact, it follows immediately that if $T^{\nabla} = 0$ then Codazzi coupling of ∇ with L makes L integrable and makes ∇ (para-)holomorphic.

The condition (18) can be recast in another form to reveal its meaning:

Theorem 4. Given ∇ and L on a manifold, then ∇ is (para-)holomorphic and L is integrable if and only if

$$T^{\nabla}(LX,Y) = L(T^{\nabla^{L}}(X,Y)). \tag{19}$$

Theorem 4 shows that the (para-)holomorphicity condition on ∇ can be thought of as requiring "Torsion-Balancing" between ∇ and ∇^L .

3.2 Almost (Para-)Hermitian Structure

The compatibility condition between g and an almost (para-)complex structure J(K) is well-known. We say that g is compatible with J if J is orthogonal, i.e.

$$g(JX, JY) = g(X, Y) \tag{20}$$

holds for any vector fields X and Y. Similarly we say that g is compatible with K if

$$g(KX, KY) = -g(X, Y) \tag{21}$$

is always satisfied, which implies that g must be of split signature. When expressed using L, (20) and (21) have the same form

$$g(X, LY) + g(LX, Y) = 0.$$
 (22)

When specified in terms of compatible g and L, the manifold (M, g, L) is said to be almost (para-)Hermitian, and (para-)Hermitian manifold if L is integrable.

For any almost (para)-Hermitian manifold, we can define the 2-form $\omega(X,Y)=g(LX,Y)$, called the fundamental form, which turns out to satisfy $\omega(X,LY)+\omega(LX,Y)=0$. The three structures, a pseudo-Riemannian metric g, a nondegenerate 2-form ω , and a tangent bundle isomorphism $L:TM\to TM$ forms a "compatible triple" such that given any two, the third one is uniquely specified; the triple is rigidly "interlocked".

It can be shown that for almost (para-)Hermitian manifolds,

$$(\nabla_X^L g)(LY, Z) + (\nabla_X g)(Y, LZ) = 0.$$
(23)

3.3 (Para-)Holomorphicity of ∇^*

We have seen in Theorem 1 that ∇ is (para-)holomorphic if and only if ∇^L is also (para-)holomorphic. We now investigate conditions under which ∇^* is also (para-)holomorphic whenever ∇ is.

Lemma 6. Given arbitrary g and L on a manifold, with a (para-)holomorphic connection ∇ . Then ∇^* is also (para-)holomorphic if and only if

$$C(LX, Y, Z) = C(X, Y, LZ)$$
(24)

for any vector fields X, Y, Z. If moreover, g and L are compatible, i.e., (22) holds, then (24) is equivalent to

$$C(X,Y,Z) = g(\theta(Z,X),Y) + g(X,\theta(Z,Y)). \tag{25}$$

The condition that ∇^* is (para-)holomorphic is a very strong one as the theorem below shows.

Theorem 5. Let ∇ be a (para-)holomorphic connection ∇ on an almost (para-) Hermitian manifold (M, g, L). Then, the connection $\tilde{\nabla} = \frac{1}{2} (\nabla + \nabla^L)$ is metric-compatible if and only if ∇^* is also (para-)holomorphic.

In fact, since we already know that $\tilde{\nabla}$ is a (para-)complex connection, i.e. it preserves L, the condition of ∇^* being (para-)holomorphic is then equivalent to $\tilde{\nabla}$ being an almost (para-)Hermitian connection. Moreover, if we assume L to be integrable, since $\tilde{\nabla}$ is also (para-)holomorphic, we can conclude that when restricted to bundle $T^{(1,0)}M$, it must be equal to the (para-)Chern connection. In the theory of holomorphic vector bundles, Chern connection is the unique Hermitian holomorphic connection on a holomorphic vector bundle, and in particular on $T^{(1,0)}M$ on complex manifolds [Mor07]. In general, the Chern connection has torsion, however it is torsion-free on $T^{(1,0)}M$ if and only if (g,J) define a Kähler structure.

It is significant that if g is Codazzi-coupled to a (para-)holomorphic connection ∇ , then ∇^* is (para-)holomorphic, and hence $\tilde{\nabla}$ is (para-)Hermitian.

Theorem 6. Let (M, g, L) be a (para-)Hermitian manifold and let (∇, ∇^*, g) be a Codazzi triple. Then (∇^*, g) is (para-)holomorphic if and only if (∇, g) is (para-)holomorphic.

This generalizes the results on a Codazzi-(para-)Kähler manifold [FZ17] which admit a pair of torsion-free connections to a (para-)Hermitian manifold which admits holomorphic connections with torsion. The Torsion-Balancing condition, while breaking the requirements of (para-)Kähler structure by possibly violating $d\omega = 0$, still preserves the integrability of L.

4 Summary and Discussions

(Para-)holomorphic connections have hardly been systematically studied in information geometry except in restricted setting of flat connections (see [Fur09]). Connections investigated in this paper are neither curvature-free nor torsion-free. We gave a necessary and sufficient condition ("Torsion Balance") of a ∇ to be (para-)holomorphic in the presence of a (para-)complex structure L on the manifold. Given a (para-)holomorphic connection ∇ , we then showed that (i) ∇^L , its L-conjugate, is also (para-)holomorphic; (ii) ∇^* , its g-conjugate, is (para-)holomorphic if and only if g and ∇ are Codazzi coupled. These concise characterizations allow us to enhance a statistical structure to a (para-)Hermitian structure, as well as understand the properties of L-conjugaty and g-conjugacy of a connection of a (para-)Hermitian manifold.

Acknowledgement. This research is supported by DARPA/ARO Grant W911NF-16-1-0383 to the University of Michigan (PI: Jun Zhang).

References

- [Fur09] Furuhata, H.: Hypersurfaces in statistical manifolds. Differ. Geom. Appl. **27**(3), 420–429 (2009)
- [HM11] Henmi, M., Matsuzoe, H.: Geometry of pre-contrast functions and nonconservative estimating functions. In: International Workshop on Complex Structures, Integrability and Vector Fields, vol. 1340, no. 1. AIP Publishing (2011)
- [Lau87] Lauritzen, S.L.: Statistical manifolds. In: Differential Geometry in Statistical Inference. IMS Lecture Notes Monograph Series, vol. 10, pp. 163–216. Institute of Mathematical Statistics (1987)
- [Mat13] Matsuzoe, H.: Statistical manifolds and geometry of estimating functions. In: Recent Progress in Differential Geometry and Its Related Field, pp. 187–202. World Sci. Publ. (2013)
- [Mor07] Moroianu, A.: Lectures on Kähler Geometry. London Mathematical Society Student Texts, vol. 69. Cambridge University Press, Cambridge (2007)
 - [NS94] Nomizu, K., Sasaki, T.: Affine Differential Geometry: Geometry of Affine Immersions. Cambridge Tracts in Mathematics, vol. 111. Cambridge University Press, Cambridge (1994)
- [Sim00] Simon, U.: Affine differential geometry. In: Handbook of Differential Geometry, vol. 1, pp. 905–961. North-Holland (2000)
- [SSS09] Schwenk-Schellschmidt, A., Simon, U.: Codazzi-equivalent affine connections. RM **56**(1–4), 211–229 (2009)
- [TZ16] Tao, J., Zhang, J.: Transformations and coupling relations for affine connections. Differ. Geom. Appl. 49, 111–130 (2016)
- [FZ17] Fei, T., Zhang, J.: Interaction of Codazzi couplings with (para-)Kahler geometry. RM (2017)

Author Queries

Chapter 22

Query Refs.	Details Required	Author's response
AQ1	Please confirm if the corresponding author is correctly identified. Amend if necessary.	
AQ2	Kindly provide volume number and page range for Ref. [10], if applicable.	