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Abstract. On a statistical manifold (M, g, ∇), the Riemannian metric
g is coupled to an (torsion-free) affine connection ∇, such that ∇g is
totally symmetric; {∇, g} is said to form “Codazzi coupling”. This leads
∇∗, the g -conjugate of ∇, to have same torsion as that of ∇. In this
paper, we investigate how statistical structure interacts with L in an
almost Hermitian and almost para-Hermitian manifold (M, g, L), where
L denotes, respectively, an almost complex structure J with J2 = −id
or an almost para-complex structure K with K2 = id. Starting with
∇L, the L -conjugate of ∇, we investigate the interaction of (generally
torsion-admitting) ∇ with L, and derive a necessary and sufficient condi-
tion (called “Torsion Balancing” condition) for L to be integrable, hence
making (M, g, L) (para-)Hermitian, and for ∇ to be (para-)holomorphic.
We further derive that ∇L is (para-)holomorphic if and only if ∇ is, and
that ∇∗ is (para-)holomorphic if and only if ∇ is (para-)holomorphic and
Codazzi coupled to g. Our investigations provide concise conditions to
extend statistical manifolds to (para-)Hermitian manifolds. AQ1

1 Introduction

On the tangent bundle TM of a differentiable manifold M , one can introduce
two separate structures: affine connection ∇ and pseudo-Riemannian metric g. A
manifold M equipped with a g and a torsion-free connection ∇ is called a statisti-
cal manifold if (g,∇) is Codazzi-coupled [Lau87]. This is the setting of “classical”
information geometry, where the (g,∇) pair arises from a general construction
of divergence (“contrast”) functions. To accommodate for torsions in affine con-
nections, the concept of pre-contrast functions was introduced [HM11]. Codazzi
coupling has been traditionally studied by affine geometers [NS94,Sim00]. The
robustness of Codazzi coupling was investigated by perturbing both the metric
and the affine connection [SSS09] and by its interaction with other transforma-
tions of connection [TZ16]. Below, we provide a succinct overview.

1.1 g-conjugate Connection, Cubic Form, and Codazzi Coupling

Given the pair (g,∇), we construct the (0, 3)-tensor C by

C(X,Y,Z) := (∇Zg)(X,Y ) = Zg(X,Y ) − g(∇ZX,Y ) − g(X,∇ZY ). (1)
c© Springer International Publishing AG 2017
F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 1–9, 2017.
https://doi.org/10.1007/978-3-319-68445-1 22

A
u

th
o

r 
P

ro
o

f



2 S. Grigorian and J. Zhang

The tensor C is sometimes referred to as the cubic form associated to the pair
(∇, g). When C = 0, we say g is parallel under ∇.

Given the pair (g,∇), we can also construct ∇∗, called g -conjugate connec-
tion, by

Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗
ZY ). (2)

It can be checked easily that (i) ∇∗ is indeed a connection and (ii) g-conjugation
of a connection is involutive, i.e., (∇∗)∗ = ∇.

These two constructions from an arbitrary (g,∇) pair are related via

C(X,Y,Z) = g(X, (∇∗ − ∇)ZY ), (3)

so that
C∗(X,Y,Z) := (∇∗

Zg)(X,Y ) = −C(X,Y,Z).

Therefore C(X,Y,Z) = C∗(X,Y,Z) = 0 if and only if ∇∗ = ∇, that is, ∇ is
g-self-conjugate. A connection is both g -self-conjugate and torsion-free defines
what is called the Levi-Civita connection ∇LC associated to g.

Simple calculation reveals that

C(X,Y,Z) − C(Z, Y,X) = (∇Zg)(X,Y ) − (∇Xg)(Z, Y ),
C(X,Y,Z) − C(X,Z, Y ) = g(X,T∇∗

(Z, Y ) − T∇(Z, Y )),
(4)

where T∇ denotes the torsion of ∇
T∇(X,Y ) = ∇XY − ∇Y X − [X,Y ].

Note that C(X,Y,Z) = C(Y,X,Z) always holds, due to g(X,Y ) = g(Y,X).
Therefore, imposing either of the following is equivalent:

1. C(X,Y,Z) = C(Z, Y,X),
2. C(X,Y,Z) = C(X,Z, Y );

this is because either (i) or (ii) will make C totally symmetric in all of its indices.
In the case of (i), we say that g and ∇ are Codazzi-coupled :

(∇Zg)(X,Y ) = (∇Xg)(Z, Y ). (5)

In the case of (ii), ∇ and ∇∗ have same torsion. These well-known facts are
summarized in the following Lemma.

Lemma 1. Let g be a pseudo-Riemannian metric, ∇ an arbitrary affine connec-
tion, and ∇∗ be the g-conjugate connection of ∇. Then the following statements
are equivalent:

1. (∇, g) is Codazzi-coupled;
2. (∇∗, g) is Codazzi-coupled;
3. C is totally symmetric;
4. C∗ is totally symmetric;
5. T∇ = T∇∗

.
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(Para-)Holomorphic Connections for Information Geometry 3

In the above case, (g,∇,∇∗) is called a Codazzi triple. Codazzi-coupling
between g and ∇ or, equivalently, the existence of Codazzi triple (g,∇,∇∗) is the
key feature of a statistical manifold. In “quantum” information geometry, ∇ is
allowed to carry torsion, and [Mat13] introduced Statistical Manifold Admitting
Torsion (SMAT) as a manifold (M, g,∇) satisfying

(∇Y g)(X,Z) − (∇Xg)(Y,Z) = g(T∇(X,Y ), Z).

Note that ∇∗ is torsion-free if and only if (M, g,∇) is a SMAT. However, in a
SMAT, neither ∇ nor ∇∗ is Codazzi coupled to g; the deviation from Codazzi
coupling is measured by the torsion T∇ of ∇.

2 Structure of TM Arising from L

A tangent bundle isomorphism L may induce a splitting of TM , corresponding
to the eigenbundles associated with the eigenvalues of L. How the action of an
arbitrary connection ∇ respects such splitting is the focus of our current paper.

2.1 Splitting of TM by L

For a smooth manifold M , an isomorphism L of the tangent bundle TM is a
smooth section of the bundle End(TM) such that it is invertible everywhere.
By definition, L is called an almost complex structure if L2 = −id, or an almost
para-complex structure if L2 = id and the multiplicities of the eigenvalues ±1
are equal. We will use J and K to denote almost complex structures and almost
para-complex structures, respectively, and use L when these two structures can
be treated in a unified way. It is clear from our definition that such structures
exist only when M is of even dimension.

Denote eigenvalues of L as ±α, where α = 1 for L = K and α = i for L = J ,
respectively. Following the standard procedure, we (para-)complexify TM by
tensoring with C or para-complex (also known as split-complex) field D, and use
TLM to denote the resulting TM ⊗ C or TM ⊗ D, depending on the type of L.
In analogy with standard notation in the complex case, let T (1,0)M and T (0,1)M
be the eigenbundles of L corresponding to the eigenvalues ±α, i.e., at each point
p ∈ M , the fiber is defined by

T (1,0)(p) := {X ∈ TL
p M : Lp(X) = αX} ,

T (0,1)(p) := {X ∈ TL
p M : Lp(X) = −αX} .

As sub-bundles of the (para-)complexified tangent bundle TLM , T (1,0)M and
T (0,1)M are distributions. A distribution is called a foliation if it is closed under
the bracket [·, ·] . We will refer to vectors to be of type (1, 0) and (0, 1) if they take
values in T (1,0)M and T (0,1)M respectively. Moreover, define π(1,0) and π(0,1) to
be the projections of a vector field to T (1,0)M and T (0,1)M respectively.

The Nijenhuis tensor NL associated with L is defined as

NL(X,Y ) = −L2[X,Y ] + L[X,LY ] + L[LX, Y ] − [LX,LY ]. (6)
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4 S. Grigorian and J. Zhang

When NL = 0, the operator L is said to be integrable. It is well-known that
both T (1,0)M and T (0,1)M are foliations if and only if L is integrable, i.e., the
integrability condition NL = 0 is satisfied.

2.2 L-conjugate of ∇
Starting from a (not necessarily torsion-free) connection ∇ operating on sections
of TM , we can apply an L-conjugate transformation to obtain a new connection
∇L := L−1∇L, or

∇L
XY = L−1(∇X(LY )) (7)

for any vector fields X and Y ; here L−1 denotes the inverse isomorphism of L.
It can be verified that indeed ∇L is an affine connection.

Define a (1, 2)-tensor (vector-valued bilinear form) S via the expression

S(X,Y ) = (∇XL)Y − (∇Y L)X, (8)

where
(∇XL)Y = ∇X(LY ) − L(∇XY ).

We say that L and ∇ are Codazzi-coupled if S = 0. The following is known.

Lemma 2 (e.g., [SSS09]). Let ∇ be an affine connection, and let L be an arbi-
trary tangent bundle isomorphism. Then the following statements are equivalent:

(i) (∇, L) is Codazzi-coupled.
(ii) T∇(X,Y ) = T∇L

(X,Y ).
(iii) (∇L, L−1) is Codazzi-coupled.

Lemma 3. For the special case of (para-)complex operators L2 = ±id,

1. ∇L = ∇L−1
, i.e., L-conjugate transformation is involutive, (∇L)L = ∇.

2. (∇, L) is Codazzi-coupled if and only if (∇L, L) is Codazzi-coupled.

As an affine connection, ∇ gives rise to a map

∇ : Ω0(TM) → Ω1(TM),

where Ωi(TM) is the space of smooth i-forms with value in TM . We may extend
this to a map

d∇ : Ωi(TM) → Ωi+1(TM)

by
d∇(α ⊗ v) = dα × v + (−1)iα ∧ ∇v

for any i-form α and vector field v. In the case that ∇ is flat, then (d∇)2 = 0 and
we get a chain complex whose cohomology is the de Rham cohomology twisted
by the local system determined by ∇. Regarding L as an element of Ω1(TM),
it is easy to check using local coordinates that

(d∇L)(X,Y ) = (∇XL)Y − (∇Y L)X + LT∇(X,Y ). (9)

Therefore, Codazzi coupling of ∇ and L can also be expressed as

(d∇L)(X,Y ) = T∇(LX, Y ). (10)
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(Para-)Holomorphic Connections for Information Geometry 5

2.3 Integrability of L

In [FZ17, Lemma 2.5] an expression for NL (X,Y ) in terms of T∇ has been
derived assuming S = 0. Using exactly the same procedure, we can write down
NL (X,Y ) for an arbitrary S.

Lemma 4. Given a connection ∇ with torsion T∇, the Nijenhuis tensor NL of
a (para-)complex operator L is given by

NL (X,Y ) = L2T∇ (X,Y ) − LT∇ (X,LY ) − LT∇ (LX, Y ) + T∇ (LX,LY )
+LS (X,Y ) − L−1S (LY,LX) .

Now, define θ to be

θ(X,Y ) =
1
2
(∇L

XY − ∇XY ) =
1
2
L−1(∇XL)Y. (11)

with
Lθ (X,Y ) + θ (X,LY ) = 0. (12)

In particular, we see that

1
2
L−1 (S (X,Y )) = θ (X,Y ) − θ (Y,X) ,

and therefore, θ is symmetric if and only if L and ∇ are Codazzi-coupled. Intro-
duce

∇̃ =
1
2
(∇ + ∇L),

which satisfies
∇̃L ≡ 0.

A connection with respect to which L is parallel is called (para-)complex
connection, and in particular, such a connection preserves the decomposition
TLM ∼= T (1,0)M ⊕ T (0,1)M . So starting from any connection ∇, we can con-
struct its conjugate ∇L, the average of which is the (para-)complex connection
∇̃. This situation mirrors the relationship between Levi-Civita connection and
the pair of g-conjugate connections ∇,∇∗. Note that we can also write ∇ = ∇̃−θ
and ∇L = ∇̃ + θ, so the quantity θ measures the failure of both ∇ and ∇L to
be a (para-)complex connection.

3 (Para-)Holomorphicity of ∇ Associated to L

3.1 (Para-)Holomorphic Connections

The (para-)Dolbeault operator ∂̄ for a given L on TLM is defined as

∂̄XY =
1
4

(
[X,Y ] − L2 [LX,LY ] − L−1 [LX, Y ] + L−1 [X,LY ]

)
(13)
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6 S. Grigorian and J. Zhang

for any vector fields X and Y . It can be checked easily that this expression is
tensorial in X, that is ∂̄fXY = f

(
∂̄XY

)
and is a derivation. In the case when

L = J, this defines the holomorphic structure on T CM and locally defines the
differentiation of vector fields of type (1, 0) with respect to the anti-holomorphic
coordinates ∂

∂z̄i . Similarly for para-holomorphic structure on T DM when L = K.
From (13) we obtain that if X and Y are of the same type, then ∂̄XY = 0.

However, if Y ∈ T (1,0)M and X ∈ T (0,1)M , then

∂̄XY = π(1,0) [X,Y ] (14)

and similarly ∂̄XY = π(0,1) [X,Y ] if Y ∈ T (0,1)M and X ∈ T (1,0)M .
Equivalently, note that if X ∈ T (1,0)M, then ∂̄X is a vector-valued 1-form, of
type (1, 0) as a vector and type (0, 1) as a 1-form, and conversely if X ∈ T (0,1)M.

Given a connection ∇ operating on TLM , we can ask the question whether ∇
is compatible with ∂̄. To understand this we may define an alternative operator
∂̄∇, which for Y ∈ T (1,0)M is defined as taking the (0, 1)-part of the vector-
valued 1-form ∇Y (and conversely on T (0,1)M). This can be expressed as

∂̄∇
XY =

1
2

(∇XY − ∇LX

(
L−1Y

))
(15)

for any vector fields X and Y in TLM . Clearly, ∂̄∇
XY = 0 if X and Y are

of the same type and is just ∇XY if X and Y are of opposite type. On a
(para-)holomorphic vector bundle, a connection is said to be (para)-holomorphic
if these two Dolbeault operators coincide. We extend this notion to arbitrary
connections on TLM ∼= T (1,0)M ⊕ T (0,1)M (that do not necessarily preserve
T (1,0)M and T (0,1)M) – we say a connection ∇ is (para-)holomorphic if ∂̄∇

XY =
∂̄XY for any vector fields X and Y .

It can be readily shown that

Theorem 1. ∇L is (para-)holomorphic if and only if ∇ is (para-)holomorphic.

Theorem 2. When ∇ is (para-)holomorphic, the quantity θ (X,Y ) satisfies:

Lθ (X,Y ) = −θ (X,LY ) = −θ (LX, Y ) = L−1θ (LX,LY ) . (16)

Theorem 2 shows that θ (X,Y ) vanishes whenever X and Y are of different
types. Moreover, if X and Y are both of type (1, 0), θ (X,Y ) is of type (0, 1),
and vice versa.

Using (13) and (15), we can also prove

Lemma 5. Given an arbitrary connection ∇ and an L on a manifold, the con-
nection ∇ is (para-)holomorphic if and only if

S(X,Y ) = T∇(LX, Y ) − LT∇(X,Y ) − 1
2
L2NL(LX, Y ). (17)

From this, we prove the main theorem of our paper.
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(Para-)Holomorphic Connections for Information Geometry 7

Theorem 3. Given the an arbitrary pair (∇, L) on a manifold, the connection
∇ is (para-)holomorphic and L is integrable if and only if

S(X,Y ) = T∇(LX, Y ) − LT∇(X,Y ). (18)

The significance of Theorem 3 is that this gives us a generalization of the
Codazzi coupling condition for L that was used in [FZ17] in the case T∇ = 0.
In fact, it follows immediately that if T∇ = 0 then Codazzi coupling of ∇ with
L makes L integrable and makes ∇ (para-)holomorphic.

The condition (18) can be recast in another form to reveal its meaning:

Theorem 4. Given ∇ and L on a manifold, then ∇ is (para-)holomorphic and
L is integrable if and only if

T∇(LX, Y ) = L(T∇L

(X,Y )). (19)

Theorem 4 shows that the (para-)holomorphicity condition on ∇ can be
thought of as requiring “Torsion-Balancing” between ∇ and ∇L.

3.2 Almost (Para-)Hermitian Structure

The compatibility condition between g and an almost (para-)complex structure
J(K) is well-known. We say that g is compatible with J if J is orthogonal, i.e.

g(JX, JY ) = g(X,Y ) (20)

holds for any vector fields X and Y . Similarly we say that g is compatible with
K if

g(KX,KY ) = −g(X,Y ) (21)

is always satisfied, which implies that g must be of split signature. When
expressed using L, (20) and (21) have the same form

g(X,LY ) + g(LX, Y ) = 0. (22)

When specified in terms of compatible g and L, the manifold (M, g, L) is said
to be almost (para-)Hermitian, and (para-)Hermitian manifold if L is integrable.

For any almost (para)-Hermitian manifold, we can define the 2-form
ω(X,Y ) = g(LX, Y ), called the fundamental form, which turns out to satisfy
ω(X,LY ) + ω(LX, Y ) = 0. The three structures, a pseudo-Riemannian metric
g, a nondegenerate 2-form ω, and a tangent bundle isomorphism L : TM → TM
forms a “compatible triple” such that given any two, the third one is uniquely
specified; the triple is rigidly “interlocked”.

It can be shown that for almost (para-)Hermitian manifolds,

(∇L
Xg)(LY,Z) + (∇Xg)(Y,LZ) = 0. (23)
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8 S. Grigorian and J. Zhang

3.3 (Para-)Holomorphicity of ∇∗

We have seen in Theorem 1 that ∇ is (para-)holomorphic if and only if ∇L is
also (para-)holomorphic. We now investigate conditions under which ∇∗ is also
(para-)holomorphic whenever ∇ is.

Lemma 6. Given arbitrary g and L on a manifold, with a (para-)holomorphic
connection ∇. Then ∇∗ is also (para-)holomorphic if and only if

C (LX, Y, Z) = C (X,Y, LZ) (24)

for any vector fields X,Y,Z. If moreover, g and L are compatible, i.e., (22) holds,
then (24) is equivalent to

C (X,Y,Z) = g (θ (Z,X) , Y ) + g (X, θ (Z, Y )) . (25)

The condition that ∇∗ is (para-)holomorphic is a very strong one as the
theorem below shows.

Theorem 5. Let ∇ be a (para-)holomorphic connection ∇ on an almost (para-)
Hermitian manifold (M, g, L). Then, the connection ∇̃ = 1

2

(∇ + ∇L
)

is metric-
compatible if and only if ∇∗ is also (para-)holomorphic.

In fact, since we already know that ∇̃ is a (para-)complex connection, i.e.
it preserves L, the condition of ∇∗ being (para-)holomorphic is then equiva-
lent to ∇̃ being an almost (para-)Hermitian connection. Moreover, if we assume
L to be integrable, since ∇̃ is also (para-)holomorphic, we can conclude that
when restricted to bundle T (1,0)M , it must be equal to the (para-)Chern con-
nection. In the theory of holomorphic vector bundles, Chern connection is the
unique Hermitian holomorphic connection on a holomorphic vector bundle, and
in particular on T (1,0)M on complex manifolds [Mor07]. In general, the Chern
connection has torsion, however it is torsion-free on T (1,0)M if and only if (g, J)
define a Kähler structure.

It is significant that if g is Codazzi-coupled to a (para-)holomorphic connec-
tion ∇, then ∇∗ is (para-)holomorphic, and hence ∇̃ is (para-)Hermitian.

Theorem 6. Let (M, g, L) be a (para-)Hermitian manifold and let (∇,∇∗, g)
be a Codazzi triple. Then (∇∗, g) is (para-)holomorphic if and only if (∇, g) is
(para-)holomorphic.

This generalizes the results on a Codazzi-(para-)Kähler manifold [FZ17]
which admit a pair of torsion-free connections to a (para-)Hermitian manifold
which admits holomorphic connections with torsion. The Torsion-Balancing con-
dition, while breaking the requirements of (para-)Kähler structure by possibly
violating dω = 0, still preserves the integrability of L.
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4 Summary and Discussions

(Para-)holomorphic connections have hardly been systematically studied in
information geometry except in restricted setting of flat connections (see
[Fur09]). Connections investigated in this paper are neither curvature-free nor
torsion-free. We gave a necessary and sufficient condition(“Torsion Balance”)
of a ∇ to be (para-)holomorphic in the presence of a (para-)complex struc-
ture L on the manifold. Given a (para-)holomorphic connection ∇, we then
showed that (i) ∇L, its L-conjugate, is also (para-)holomorphic; (ii) ∇∗, its g
-conjugate, is (para-)holomorphic if and only if g and ∇ are Codazzi coupled.
These concise characterizations allow us to enhance a statistical structure to a
(para-)Hermitian structure, as well as understand the properties of L-conjugaty
and g-conjugacy of a connection of a (para-)Hermitian manifold.

Acknowledgement. This research is supported by DARPA/ARO Grant W911NF-
16-1-0383 to the University of Michigan (PI: Jun Zhang).
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