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Interaction of Codazzi Couplings
with (Para-)Kihler Geometry
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Abstract. We study Codazzi couplings of an affine connection V with a
pseudo-Riemannian metric g, a nondegenerate 2-form w, and a tangent
bundle isomorphism L on smooth manifolds, as an extension of their par-
allelism under V. In the case that L is an almost complex or an almost
para-complex structure and (g,w, L) form a compatible triple, we show
that Codazzi coupling of a torsion-free V with any two of the three
leads to its coupling with the remainder, which further gives rise to a
(para-)Kéahler structure on the manifold. This is what we call a
Codazzi-(para-)Kahler structure; it is a natural generalization of special
(para-)Kéahler geometry, without requiring V to be flat. In addition, we
also prove a general result that g-conjugate, w-conjugate, and L-gauge
transformations of V, along with identity, form an involutive Abelian
group. Hence a Codazzi-(para-)Kéhler manifold admits a pair of torsion-
free connections compatible with the (g,w, L). Our results imply that any
statistical manifold may admit a (para-)Kéhler structure as long as one
can find an L that is compatible to g and Codazzi coupled with V.
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1. Introduction

Let M be a smooth (real) manifold and V be a torsion-free connection on it.
In this paper, we would investigate the interaction of V with three geometric
structures on M, namely, a pseudo-Riemannian metric g, a nondegenerate 2-
form w, and a tangent bundle isomorphism L : TM — T M, often forming a
“compatible triple” together. The interaction of the compatible triple with V,
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in terms of parallelism, is well understood, leading to integrability of L and of
w, and turning almost (para-)Hermitian structure to (para-)Kéhler structure.
Here, we investigate the interaction of V with the compatible triple in terms
of Codazzi coupling, a relaxation of parallelism.

The most important examples of the bundle isomorphism L are almost
complex structures and almost para-complex structures. By definition, L is
called an almost complex structure if L? = —id. Analogously, L is known
as an almost para-complex structure if L? = id and the multiplicities of the
eigenvalues £1 are equal. We will use J and K to denote almost complex
structures and almost para-complex structures, respectively, and use L when
these two structures can be treated in a unified way. It is clear from our
definition that such structures exist only when M is of even dimension.

The compatibility condition between a metric g and an almost (para-)
complex structure J(K) is well-known. We say that g is compatible with J if
J is orthogonal, i.e.

9(JX, JY) = g(X,Y) (1)
holds for any vector fields X and Y. Similarly we say that g is compatible with
K if

g(KX,KY) = —g(X,Y) (2)
is always satisfied, which implies that g must be of split signature. When
expressed using L, (1) and (2) have the same form

g(X,LY) 4+ g(LX,Y)=0. (3)
Hence a (0,2)-tensor w can be defined
w(X,Y) =g(LX,Y), (4)
and turns out to satisfy
w(X,LY)+w(LX,Y)=0. (5)

Of course, one can also start with w and define g(X,Y) = w(L71X,Y), then
show that imposing compatibility of w and L via (5) leads to the desired
symmetry of g. Finally, given the knowledge of both ¢ and w, the bundle
isomorphism L defined by (4) is uniquely determined, which satisfies (3), (5)
and L? = +id. Whether L takes the form of J or K depends on whether (1)
as opposed to (2) is to be satisfied.

In any case, the three objects g, w and L form a compatible triple such
that given any two, the third one is rigidly “interlocked”. When specified in
terms of compatible g and L, the manifold (M,g,L) is said to be almost
(para-)Hermitian, and (para-)Hermitian manifold if L is integrable. On the
other hand, when specified in terms of a nondegenerate 2-form w, the manifold
(M,w) is said to be symplectic if we require w to be closed. Amending (M, w)
with a (not necessarily integrable) L turns (M,w, L) into an almost (para-)
Kéhler manifold. When we require both (i) an integrable L and (ii) a closed
w, then what we have on M is a (para-)Kdhler structure.
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Though the definition of a (para-)Kéhler manifold does not involve any
connections, it is the integrability conditions of L and w that make the proper-
ties of V relevant. A well-known result states that (M, g, L) is (para-)Kéahler if
and only if L is parallel under the Levi-Civita connection of g. In other words,
there exists a torsion-free connection V such that

Vg=0, VL=0.

Since the parallelism of L with respect to any torsion-free V implies that L is
integrable, a symplectic manifold (M,w) can be enhanced to a (para-)Kéhler
manifold if any symplectic connection on M renders L parallel:

Vw=0, VL=0.

In this paper, we investigate integrability of L and of w while g and L
are not necessarily covariant constant with respect to V. The compatibility
of V with g or L is captured by the so-called Codazzi coupling, generalizing
the aforementioned parallelism. Codazzi coupling of (V, g) characterizes what
is known to information geometers as statistical structures [11], and is widely
studied in affine differential geometry [18,21]. As a special case, Hessian mani-
folds (for which V is flat but not Levi-Civita) are the affine analogue of Kéhler
manifolds, see [3,20].

The contributions of our investigations include:

(a). Theorem 2.13 provides the structural result that the Kleinian group acts
on an arbitrary affine connection by g-conjugation, w-conjugation, and
L-gauge transformation.

(b). Theorem 3.4 explains the relationship of Codazzi couplings of a torsion-
free connection with a compatible triple. This enhances a compatible
triple to a compatible “quadruple”.

(c). Propositions 3.10 and 3.11 (along with Definition 3.9) show compatibil-
ity of a pair of connections with K&hler and para-Kéahler structures. This
result readily generalizes special Kéhler geometry (where the connec-
tion is curvature-free) to Codazzi-Kéhler geometry (where the connec-
tion need not be curvature-free). Special Kédhler manifolds have abundant
applications in string theory.

Though the derivations are standard (and even elementary), our paper
fills the gap between Codazzi coupling and Kéhler/para-Kéahler geometry
which have not been systematically attended to. The results are of interest
with respect to affine differential geometry and the interdisciplinary area of
Information Geometry, in which Codazzi coupling and conjugate connections
play a key role.

The structure of the paper is as follows. In Sect. 2, we investigate Codazzi
coupling of an arbitrary affine connection V with (g,w, L), and show how the
respective Codazzi coupling results in torsion preservation upon conjugation
of V by g or by w, or upon its gauge transform by L. We then prove a key
result stating that g-conjugation, w-conjugation, and L-gauge transformation
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(along with an identity operation) together act as the 4-element Klein group
(Theorem 2.13). As a corollary, g-conjugation and L-gauge transformation are
identical when V is almost symplectic (Corollary 2.14). Along with our proof
that Codazzi coupling of V with L implies the integrability of L (Proposition
2.6), we arrive at our main result that Codazzi coupling of V with both g and
L gives rise to a (para-)Kéhler manifold (Theorem 3.2). In Sect. 3, we intro-
duce the notion of Codazzi-(para-)Kéhler structure, as a (para-)Kéhler struc-
ture with an additional “nice” affine connection V. Just as a (para-)Kéhler
manifold is an integrable structure of a compatible triple (g,w, L), a Codazzi-
(para-)Kéhler manifold M is an integrable “compatible quadruple” (Definition
3.9); it admits a pair of torsion-free connections, both Codazzi-coupled with
each member of the compatible triple (g,w, L) (Propositions 3.10 and 3.11).
Codazzi-(para-)Kéahler manifold is a natural generalization of special (para-
)Ké&hler geometry, without requiring V (and hence its Codazzi-dual) to be
flat. Essentially, Codazzi-(para-)K&hler structure is simultaneously a statis-
tical structure and a (para-)Kéahler structure (Corollary 3.6). In Sect. 4, we
close our paper with some discussions of our results under the context of special
Kahler geometry in theoretical physics and information geometry.

2. Codazzi Coupling, Conjugation, and Torsion

In this section, we investigate Codazzi couplings of an affine connection V on
a real manifold M with a pseudo-Riemannian metric g and a tangent bundle
isomorphism L : TM — TM. We prove that the Codazzi coupling between
a torsion-free V and a quadratic operator L leads to transversal foliations.
Mirroring the study of these Codazzi couplings is the study the transformations
of V by g-conjugate, by w-conjugate, and by L-gauge, which are all related to
preservation of torsion of V. As a highlight, we show that these transformations
generically are non-trivial elements of the four-element Kleinian group.

2.1. Codazzi Coupling of V with L

For a smooth manifold M, an isomorphism L of the tangent bundle TM is a
smooth section of the bundle End T'M such that it is invertible everywhere.
Starting from a (not necessarily torsion-free) connection V on TM, we can
apply an L-gauge transformation to obtain a new connection V% defined by

VLY = L7Y(Vx(LY))

for any vector fields X and Y. It can be verified that indeed V* is an affine
connection. This is just the standard gauge group action on the space of affine
connections.

Definition 2.1. We say that L and V are Codazzi-coupled if the following
identity holds
(VxL)Y = (VyL)X, (6)
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where
(VxL)Y =Vx(LY) - L(VxY).
We have the following characterization of Codazzi coupling;:

Proposition 2.2. (e.g., [22]) Let V be an affine connection, and let L be a
tangent bundle isomorphism. Then the following statements are equivalent:

(a). (V,L) is Codazzi-coupled.
(b). V and VI have equal torsions.
(c). (VE, L™ is Codazzi-coupled.

Proof. Recall the torsion tensor TV(X,Y) = VxV — Vy X — [X,Y], it is
straightforward to obtain
LT (VxD)(Y) = (VyD)(X) =T (X.Y) =TV (X.Y).

Hence (a) and (b) are equivalent. Furthermore, because (VF)E = V, (b) is
equivalence to (c¢) on accounts of its equivalence to (a). O
One can easily prove the following for the special case of L? = +id.
Corollary 2.3. When L is either an almost complex structure J or an almost

para-complex structure K,
(a). VL =VL ' ie., L-gauge transformation is involutive, (V)L = V.
(b). (V, L) is Codazzi-coupled if and only if (V¥ L) is Codazzi-coupled.

There is another way to understand the Codazzi-coupling of V and L.
As an affine connection, V gives rise to a map

vV QNTM) — QYT M),
where QY(TM) is the space of smooth i-forms with value in TM. We may
extend this to a map
dvV . Q(TM) — QN (TM)
by
dV(a®@v) =da x v+ (=1)'aA Vo

for any i-form o and vector field v. In the case that V is flat, then (dV)? =0
and we get a chain complex whose cohomology is the de Rham cohomology
twisted by the local system determined by V.

Regarding L as an element of QY(T'M), it is easy to check using local
coordinates that

(@VL)(X,Y) = (VxL)Y — (Vy D)X + LTV (X, ),
where the torsion tensor TV is given by

TV(X,Y)=VxY - VyX — [X,Y].
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Therefore Codazzi-coupling of V and L is equivalent to
dvVL =LTV.
In particular it implies that L is dV-closed when V is torsion-free.

2.2. Quadratic Operator and Transversal Foliations

Definition 2.4. (Quadratic operator) A tangent bundle isomorphism L : TM —
TM is called a quadratic operator if it satisfies a real coefficient quadratic
polynomial equation with distinct roots, i.e., there exists a # 3 € C such that
a + B3, af are real numbers and

L* — (a+B)L+aB-id =0.

Note that L is an isomorphism, so a8 # 0. The most important examples
of such operators are almost complex structures J? = —id and almost para-
complex structures K2 = id on TM.

Let E, and Eg be the eigenbundles of L corresponding to the eigenvalues
« and 3 respectively, i.e., at each point p € M, the fiber is defined by

E\(p) :={x € T,M : L,(z) = Az} for A=a,p.

As sub-bundles of the tangent bundle TM, E, and Ejs are distributions. We
call E,(E3) a foliation if for any vector fields X,Y with value in E,(E3), so
is their Lie bracket [X,Y].

The Nijenhuis tensor Ny, associated with L is defined as
Np(X,Y)=—-L*X,Y]+ L[X,LY]+ LILX,Y] — [LX, LY].

When N = 0, the operator L is said to be integrable. It is well-known that
both E, and Ejg are foliations if and only if L is integrable, i.e., the integrability
condition Ny = 0 is satisfied. If o and 3 are not real, this makes sense only
after we complexify T'M by tensoring with C.

Lemma 2.5. Let L be a quadratic operator which is Codazzi-coupled to an affine
connection V. Then

Ny(X,Y)=L*TV(X,Y) - LTY(X,LY) — LTV (LX,Y) + TV(LX,LY).

Proof. For any affine connection V, the condition
(VxL)Y =(VyL)X
is equivalent to
Vx(LY) - Vy(LX) - LIX,Y] = LTV (X,Y). (7)
Substitute X and Y by LY and LX respectively, we get
Viy(L?X) - Vix(L*Y) — L[LY,LX] = LTV (LY, LX).

Using the assumption that L? — (o + 8)L + af3 - id = 0, we can rewrite it as

(+B— L)LY, LX] - af(Viy X —VixY) = (L—a— )TV (LY,LX). (8)
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By computing L(af(7) + (8)), we get
afBNL(X,Y) =ap(—L*[X,Y]+ LIX,LY] + L[LX,Y] — [LX, LY))
=af(L*TV(X,Y) - LTV (X,LY) — LTV (LX,Y)
+TV(LX,LY)).
O
An immediate corollary of the above is that, if V is torsion-free, then the

Nijenhuis tensor /Ny, vanishes and we get two transversal foliations F, and Eg.
That is,

Proposition 2.6. A quadratic operator L is integrable if it is Codazzi-coupled
to a torsion-free connection V.

Combining Proposition 2.6 with 2.2, we have

Proposition 2.7. A quadratic operator L is integrable if there exists a torsion-
free connection V such that V¥ is torsion-free.

Remark 2.8. One wonders whether the converse of Proposition 2.6 is true or
not. The answer is negative, because Ny, also vanishes when the operator L
satisfies, instead of (6), the following relation for any torsion-free connection
V:

L(VxL)Y = (VrxL)Y; (9)
see, e.g., [16, Lemma 11.4] for a proof for the almost complex case. In fact,
because of the identity

0=Vx(L?) = (VxL)L+ L(VxL), (10)
we see that (6) leads to
L(VxL)Y = —(VxL)(LY) = —(V.yL)X,

contrary to (9) by a sign. Therefore, (9), as a condition implying N, = 0,
cannot itself be derived from (6).
2.3. Codazzi Coupling of V with g
Now we recall the Codazzi coupling of V with a pseudo-Riemannian metric g
on M. Let C be the (0,3)-tensor defined by

C(X,Y, ) = (V2g)(X,Y) = Zg(X,Y) — (V2 X,¥) — g(X, V7). (11)

Clearly C(X,Y,Z) = C(Y,X,Z), due to symmetry of g. The tensor C is
sometimes referred to as the cubic form associated to the pair (V,g). Clearly
g is parallel under V if and only if C' = 0.

For any connection V, its g-conjugate connection V* is defined by

Zg(X,Y)=9g(VzX,Y)+ g(X,V3,Y). (12)

It can be checked easily that V* is indeed a connection. In addition, g-
conjugation of a connection is involutive, i.e., (V*)* = V.
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Comparing (11) and (12), we have
C(X,Y,Z) = g(X, (V" = V)zY). (13)
Immediately we see that
C*(X.Y,2) = (V39)(X.Y) = ~C(X, Y, 2).

Therefore C(X,Y,Z) = C*(X,Y,Z) = 0 if and only if V* = V, that is, V is
g-self-conjugate. A connection is both g-self-conjugate and torsion-free must
coincide with the Levi-Civita connection V*¢ associated to g (see also Remark
2.11 below).

Definition 2.9. We say the pseudo-Riemannian metric g and the connection V
are Codazzi-coupled if the following identity holds

(Vzg)(X,Y) = (Vxg)(Z,Y). (14)
Stated in terms of the cubic form C|, this condition is
C(X,Y,Z)=C(Z,Y,X).

Because C(X,Y.Z) = C(Y,X,Z), the condition for (g,V) being Codazzi-
coupled is equivalent to C' being totally symmetric in all of its indices.
A simple calculation shows that

C(X,Y.Z)-C(X,Z,Y)=g(X. TV (2,Y) - TV (Z,Y)).

So C' is totally symmetric if and only if V and V* have same torsion. We
summarize the above discussions by the following proposition.

Proposition 2.10. Let g be any pseudo-Riemannian metric and V be any affine
connection. Let V* be the g-conjugate connection of V, and C = Vg, C* =
V*g. Then the following statements are equivalent:

(a). (V,g) is Codazzi-coupled;

). (V*,9) is Codazzi-coupled;

(¢c). C is totally symmetric;

(d). C* is totally symmetric;

(e). TV =TV,

A manifold M equipped with a pseudo-Riemannian metric g and a
torsion-free connection V is called a statistical manifold if (g, V) is Codazzi-
coupled [11]. This is the subject of “classical” information geometry. In “quan-
tum” information geometry, we also allow V to carry torsion. Matsuzoe [15]
introduced Statistical Manifold Admitting Torsion (SMAT) as a manifold
(M, g, V) satisfying

(VYQ)(Xv Z) — (VXQ)(K Z)= g(Tv(X7Y)7Z).

Such a definition ensures that the conjugate connection V* is torsion-free.
Note that for a SMAT, V and V* are not necessarily Codazzi coupled with
the metric g.
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Given a pair of conjugate connections V and V*, one can construct a
family of connections {V(®},cg, called a-connections [1]
1+« 11—«
vie =y
2 + 2
with VU = V¥ and V(-1 = V*. It is obvious from this definition that
(V@)* = V(=2 and the cubic form C(®) for the a-connections is given by

C(X,Y,Z) = aC(X,Y, Z),

v, (15)

and
9(VEIXY) = g(VY'X,Y) - O(X,Y.2),

Remark 2.11. Note that the 0-connection, which renders the metric g parallel,
may admit torsion in general, and hence differ from the Levi-Civita connection
V€. To see this, given a metric g, any connection V can be written as a com-
bination of the Levi-Civita connection with a unique (0,3)-tensor A(X,Y, Z)
known as the potential of V

9(VxY, 2) = g(VEOY, Z) + A(XY, Z).
It is not hard to find that C and A are related by

All the constraints on V can be expressed in terms of A. As an example, the
torsion-freeness plus Codazzi coupling with g is equivalent to that A is totally
symmetric; in this case we have C' = —2A.

2.4. Coupling of V with w
So far we have discussed Codazzi coupling of a torsion-free connection V with
a quadratic operator L and with a pseudo-Riemannian metric g, as general-
ization of parallelism. We now ask whether we can extend such consideration
to the 2-form w(X,Y) = g(LX,Y), and have a notion of Codazzi coupling of
V with w that extends Vw = 0. The answer is negative, as we now show.
Let us define, in analogous to the cubic form C, the following (0,3)-tensor

L(X,Y,Z) = (V20)(X,Y) = Zu(X,Y) - w(V2X,Y) - w(X,VY),
which is skew-symmetric in X,Y: T'(X,Y, Z) = —I'(Y, X, Z). However, impos-
ing naively the Codazzi coupling condition

(Vzw)(X,Y) = (Vxw)(Z,Y)

would require I'(X, Y, Z) to be symmetric in X and Z. Therefore

NX,Y,Z)=T(2,Y,X)=-T(Y,Z2,X)=-T'(X,2,Y)=T(Z,X,Y)

=Y, X,2)=-T(X,Y,Z2).

Hence I'(X,Y,Z) = 0, that is, Vw = 0. We conclude that naive Codazzi

coupling of V with w implies that w is parallel under V. When Vw = 0 and
V is torsion-free, one deduce that w is automatically closed (see Lemma 3.1
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below) and V is said to be a symplectic connection. A symplectic manifold
(M, w) equipped with a symplectic connection is known as a Fedosov manifold
[8].

On the other hand, in analogous to g-conjugation of a connection, we
may define, for any connection V, the w-conjugate connection VI by setting

Zw(X,Y) =w(VzX,Y) +w(X,VLY). (16)

It can be verified that V' is indeed a connection, and that the t operation
on V is involutive: (V)T = V. Despite of the skew-symmetric nature of w,
w-conjugation is one and the same whether defined with respect to the first or
second slot of w. This is to say, (16) holds if and only if

Zw(X,Y) =w(VLX,Y) +w(X,VY).
Making use of the definition of I', we have
(Viw)(X,Y) = =T(X,Y, Z) = =(V5w)(X,Y).

It follows that TV = TV if and only if V = V1. This is very different from
the case of V and its g-conjugate V*. We summarize the above discussions by
the following proposition.

Proposition 2.12. Let w be any skew-symmetric 2-form, V be an arbitrary
affine connection, and VT be the w-conjugate connection of V. Then the fol-
lowing statements are equivalent:

(a). Vw =0;
(b). V=VT;
(c). TV =TV".

2.5. Klein Group of Transformations of V

We now show a key relationship between the three transformations of a con-
nection V: its g-conjugate V*, its w-conjugate VT, and its L-gauge transform
VE.

Theorem 2.13. Let (g, w, L) be a compatible triple, and V*, VT, and VL denote,
respectively, g-conjugation, w-conjugation, and L-gauge transformation of an
arbitrary connection V. Then, (id,x,T,L) realizes a 4-element Klein group
action on the space of affine connections:

(V) = (VHl = (vH)! = v;
V= (VHE = (VHh
V= (V)E = (V5%

(
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Proof. The definition of conjugate connection with respect to g and to w leads
to (V*)* = V, (V1) = V, while Corollary 2.3 shows that (VX)? = V. Next,

w(VELX,Y) = Z(w(X,Y)) —w(X,VzY)
=Z(g(LX,Y)) = g(LX,VzY)
=9(Vz(LX),Y)
= g(L((V")2X),Y)
=w((V)ZX.Y),

which establishes V1 = (V*)L. Hence, upon applying L-gauge transformation
to both sides, (V1)* = V*; upon substituting V* for V on both sides, (V*)T =
VL. Commutativity of each of the three pairs of transformations is established
by the fact that each transformation, being involutive, equals their inverse. [

Theorem 2.13, along with Proposition 2.12, immediately leads to
Corollary 2.14. Given a compatible triple (g,w, L), Vw = 0 if and only if
v =Vt
Ezxplicitly written,
VyX =VzX+ LY ((VzL)X) =VzX + L(VzL™HX). (17)

Remark 2.15. Note that, in both Theorem 2.13 and Corollary 2.14, there is
no requirement of V to be torsion-free nor is there any assumption about its
Codazzi coupling with L or with g. In particular, Corollary 2.14 says that, when
viewing w(X,Y) = ¢g(LX,Y), Vw = 0 if and only if the torsions introduced
by * and by L are cancelled.

There have been confusing statements about (17), even for the special
case of L = J, the almost complex structure. In reference [6, Proposition
2.5(2)], (17) was shown after assuming (g, V) to be a statistical structure. On
the other hand, [17, Lemma 4.2] claimed the converse, also under the assump-
tion of (M, g, V) being statistical. As Corollary 2.14 shows, the Codazzi cou-
pling of V and g is not relevant for (17) to hold; (17) is entirely a consequence
of Vw = 0. Corollary 2.14 is a special case of a more general theorem ([23],
Theorem 21).

3. Codazzi-(para-)Kahler Structure

In this section, we restrict ourselves to the case that L is an almost complex
structure J or an almost para-complex structure K. We assume that L is com-
patible with g and w in the sense of (3) and (5), so (g,w, L) forms a compatible
triple. We study the interactions between these three objects with the same
torsion-free connection V: Codazzi coupling of V with L, Codazzi coupling of
V with g, and Vw = 0. We show that Codazzi couplings of a torsion-free V
with both g and L, or Codazzi coupling of an almost-symplectic V with either
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g or L, leads to (para-)Kéhler structure. This allows us to define the notion of
Codazzi-(para-)Kéhler manifolds as simultaneously statistical manifolds and
(para-)Kéhler manifolds, which include special (para-)Kéhler geometry as a
special case. In particular, we obtain a characterization of Codazzi-(para-
JKahler structure as a quadruple (g,w, L, V) for which the torsion-freeness of
V is preserved under any two of the following three operations: g-conjugation,
w-conjugation, or L-gauge transformation.

3.1. Simultaneous Codazzi Couplings by the Same V

We start with the following simple lemma.

Lemma 3.1. IfV is torsion-free, then we have
dw(X,Y,Z) = (Vzw)(X,)Y) + (Vxw)(Y, Z) + (Vyw)(Z, X). (18)
Proof. By the Cartan’s formula, we have
dw(X, Y, Z2) =Xw(Y,Z)+Yw(Z, X))+ Zw(X,Y)
—w(X, Y], Z) - w([Y, 2], X) — w([Z,X],Y).
Since V is torsion-free,
dw(X,Y,Z2) =Xw(Y,Z)+Yw(Z,X) + Zw(X,Y) —w(VxY — Vv X, Z)
—w(VyZ —-VzY,X)—w(VzX —VxZ)Y)
— (Xw(Y, Z) — (VY Z) — w(Y, V 2))
+ Yw(Z,X)-w(VyZ,X)—w(Z,Vy X))
+ (Zw(X)Y) - w(VzX)Y) —w(X,VzY))
= (Vxw)(Y,Z)+ (Vyw)(Z,X) + (Vzw)(X,Y).

We are now ready to introduce our main Theorem.
Theorem 3.2. Let V be a torsion-free connection and g a pseudo-Riemannian
metric on M. Let L denote either J or K that is compatible with g. Assuming
(i) (V,g) is Codazzi-coupled;
(i1) (V, L) is Codazzi-coupled.
Then, (M, g, L) is a (para-)Kdhler manifold.
Proof. To show M is a (para-)Kéahler manifold, we need to prove both L is
integrable and w is closed. The former follows immediately from Proposition
2.6 and the Condition (ii) above. So we only needs to show dw = 0.
We first derive the following identity:
(Vzu)(X,)Y) = Z(w(X,Y)) —w(VzX,Y) —w(X,VzY)
= (Vzg)(LX,Y) +9((VzL)X,Y)
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=C(LX,Y,Z)+g((VzL)X,Y). (19)
Alternate X,Y, Z in (19) and sum them up, making use of (18), we find
dw(X,Y,Z) — C(LX,Y, Z) — C(LY, Z,X) — C(LZ,X,Y)
= dw(Z,Y,X) — C(LZ,Y,X) - O(LX,Z,Y) — C(LY, X, Z).
By Proposition 2.10, C' is totally symmetric; this shows dw(X,Y,Z) =

dw(Z,Y, X). On the other hand, dw is totally skew-symmetric as well, so we
conclude dw = 0. O

Remark 3.3. Both Conditions (i) and (ii) are needed for dw = 0. If only Con-
dition (i) holds, we may take (M, g,w, V) be any non-(para-)K&hler manifold
with its Levi-Civita connection. We see immediately that Vw # 0.

On the other hand, if only Condition (ii) holds, we only have

2dw(X,Y,Z2) = C(LX,Y,Z) - C(LX,Z,Y)+ C(LY, Z,X) — C(LY, X, Z)
+C(LZ, X,)Y)—-C(LZ,)Y, X).
Theorem 3.4. Let V be a torsion-free connection on M, and L denote either

J or K, so L? = Fid. Then, for the following three statements regarding any
compatible triple (g,w, L), any two imply the third:

(a). (V,g) is Codazzi-coupled;
(b). (V, L) is Codazzi-coupled;
(¢). Vw=0.

As a result, M is a Kdhler or para-Kdhler manifold equipped with a symplectic
connection V.

Proof. For convenience, let us denote B(X,Y, Z) = g((Vx L)Y, Z). From (10)
we can easily deduce that

B(X,LY,Z) = B(X,Y,LZ). (20)
Because of (19), Vw can be expressed as
(Vxw)(Y,Z)=B(X,Y,Z2)+ C(LY, Z, X), (21)
so its skew-symmetry (Vxw)(Y, Z) = —(Vxw)(Z,Y) gives rise to the identity
B(X,Y,Z)+C(LY,Z,X)+ B(X,Z,Y)+ C(LZ,Y,X) =0. (22)
Statement (c) Vw = 0 translates to
B(X,Y,Z)+C(LY,Z,X) = 0. (23)
Statement (b), namely Codazzi coupling of V and L, translates to

B(X,Y,Z) = B(Y, X, Z). (24)
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From (a) and (b) to (c): From (18) and using (21),
dw(X,Y,Z) =B(X,Y,Z)+C(LY,Z,X)+ B(Y,Z,X)+ C(LZ,X,Y)
+B(Z,X,Y)+C(LX,Y, Z).

Applying (22) to the above, along with (24) and total symmetry of C,
we have

0=dw(X,Y,Z)=B(Y,Z,X)+C(LX,Y, Z),

where Theorem 3.2 is invoked in the first equality. Therefore, upon substituting
LX in place of X and using (20), we get

0=DB(Y,Z LX)+ C(L*X,Y, Z)
=B(Y,LZ,X)+C(L*Z,X,Y)
= (Vyw>(LZ, X),
where the last step is from (21). As XY, Z are all arbitrary vector fields, we
conclude that Vw = 0.
From (a) and (c) to (b): We start from (23) which is the expression of
Statement (c). Writing out (20) in terms of C, we get
C(L*Y,X,Z) = C(LY,LZ,X).
Total symmetry of C' as guaranteed by Statement (a) allows us to have
C(LY,LZ,X) = C(LX,LZ,Y),
which, in terms of B, is simply
B(X,Y,LZ)=B(Y,X,LZ).
So symmetry of B in the first two slots is proven, which is Statement (b).
From (b) and (c) to (a): Using identity (20), along with (24) as guaran-
teed by Statement (b), allows
B(X,LY,Z) = B(X,Y,LZ) = B(Y,X,LZ) = B(Y,LX, Z).
Invoking (23) as guaranteed by Statement (c), we have
C(L*Y,Z,X) = C(L*X,Z,Y),
which leads to C(Y, Z, X) = C(X, Z,Y), hence proving Statement (a). O
Remark 3.5. Theorem 3.2 says that, for an arbitrary statistical manifold
(M, g,V), if there exists a (para-)complex structure J(K) compatible with ¢
such that V and J(K) are Codazzi-coupled, then what we have of (M, g,V, L)
is a (para-)Ké&hler manifold. Theorem 3.4 further says that V is then a sym-
plectic connection, i.e. Vw = 0, and (M,w, V) is a Fedosov manifold.
Theorem 3.4 also says that, for any Fedosov manifold (M, w, V), if there
exists a (para-)complex structure J(K) compatible with w such that V and

J(K) are Codazzi-coupled, then (M,w,V,L) is a (para-)Kahler manifold. In
other words, Codazzi coupling of V with L turns a statistical manifold or a
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Fedosov manifold into a (para-)Kéhler manifold, which is then both statistical
and symplectic.

Corollary 3.6. Given compatible triple (g,w, L) on a manifold M. Then any
two of the following three statements imply the third, meanwhile making M a
(para-)Kdihler manifold:

(a). (M,g,V) is a statistical manifold;

(b). (M,w,V) is a Fedosov manifold;

(¢). (V,L) is Codazzi coupled.

We remark that Theorems 3.2 and 3.4 (and Corollary 3.6) can also be
derived when we consider the conditions of torsion-preservation by the g-
conjugate V*, w-conjugate V1, and L-gauge V* transformations of a torsion-
free connection V. Based on Propositions 2.2, 2.10, and 2.12, we can restart
the above results as

Theorem 3.7. Let V be a torsion-free connection on M, and V*, VI, and
VE are the transforms induced by the compatible triple (g,w,L). Then, M is
(para-)Kdhler if any two of the following three statements are true:

(a). V* is torsion-free;

(b). VT is torsion-free;

(c). V¥ is torsion-free.

3.2. Codazzi-(para-)Kéhler Structures

Throughout our previous discussions of the (para-)Kéhler structures, V is not
necessarily the Levi-Civita connection associated to g. So it is very natural to
propose the following definitions:

Definition 3.8. An almost Codazzi-(para-)Kdhler manifold (M, g, J(K),V) is
by definition an almost (para-)Hermitian manifold (M, g, J(K)) with an affine
connection V (not necessarily torsion-free) which is Codazzi-coupled to both
g and J(K). If V is torsion-free, then J(K) is automatically integrable and w
is parallel, so in this case we will call (M, g, J(K), V) a Codazzi-(para-)Kdhler
manifold instead.

In practice, one probably should think of an almost Codazzi-(para-)
Kéhler manifold as an almost (para-)Hermitian manifold with a specified nice
affine connection. Such structure exists on all almost (para-)Hermitian man-
ifolds (M, g,L). In particular, one can take V to be any (para-)Hermitian
connection [7]([10]), which satisfies

Vg=0 and VL=0.

In the like manner, any (para-)Kéhler manifold with its Levi-Civita connection
is automatically Codazzi-(para-)Kéhler.

Recall that “statistical structure” (M, g, V) is characterized by Condition
(i) of Theorem (3.7), see Sect. 3.1. Hence, we can view Theorem (3.7) as a
characterzation theorem for Codazzi-(para-)Kéhler structure. So a statistical
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structure can be “enhanced” to a Codazzi-(para-)Kéhler structure (M, g, L, V)
by supplying it with an L that is compatible with g and that is Codazzi coupled
with V. Hence, Codazzi-(para-)Kéahler structure is a (para-)K&hler structure
which is at the same time statistical. A statistical manifold (M, g, V) can also
be “enhanced” to a Codazzi-(para-)Kéhler structure (M, g, L, V) by supplying
it with an w such that V is symplectic. Hence, Codazzi-(para-)Kéhler manifold
is a Fedosov manifold which is at the same time a statistical manifold.

Insofar as Codazzi-(para-)Kéhler manifolds, being a special kind of
(para-)Kéhler manifold, generalize the way V is integrated into the compatible
triple (g,w, L), we propose the notion of “compatible quadruple” to describe
the compatibility between the four objects g,w, L, and V on a manifold.

Definition 3.9. A compatible quadruple on a manifold M is a quadruple
(9,w, L, V), where g and w are symmetric and skew-symmetric non-degenerate
two-forms respectively, L is either an almost complex or almost para-complex
structure, and V is a torsion-free connection, that satisfy the following rela-
tions:

w(LY, X);

for any vector fields X,Y, Z on M.

Therefore, restating Theorem 3.4 and Lemma 3.6 in terms of any three
of the compatible quadruple, we have

Proposition 3.10. A smooth manifold M is Codazzi-(para-)Kdhler if and only
if any of the following conditions holds:

(a). (g,L, V) satisfy (i3), (iv) and (v);

(b). (w, L, V) satisfy (iii), (iv) and (vi);

(¢). (g,w, V) satisfy (v) and (vi), in which case L is determined by (i).

By Theorem 2.13, any Codazzi-(para-)Ké&hler manifold admits a dual pair
(V, V%) of torsion-free connections, where V¢ is called the Codazzi dual of V:

Ve=v=v"
Proposition 3.11. For any Codazzi-(para-)Kdhler manifold, its Codazzi dual
connection satisfies:
(i) (VEL)Y = (V¥L)X;

(i) (V9)(Y.Z) = (V§9)(X,2);
(iii) (VGw)(Y, Z) = 0.
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A very important class of nontrivial Codazzi-Kéhler manifolds is the so-
called special Kiihler manifold, in which V is flat (and hence V¢ is also flat).
In special Kéhler geometry, the holomorphic cubic form = (also known as the
Yukawa coupling in mirror symmetry) is essentially defined to be

E(X,Y,Z) = —w(JX,(VzJ)Y).
From this definition, we see immediately that
E(X,Y,Z)=9g(X,VzJY) —g(X,JVzY)
=29(X,JY) = (Vzg)(X,JY) = g(V2zX,JY) — g(X,JVzY)
=ZwY,X) - w(VzY, X) —w(Y,V2zX) - C(X,JY, 2)
= (V2w)(Y. X) — O(X,JY, Z)
=-C(X,JY,Z).

From Proposition 2.10 we know that = is totally symmetric. And we can use
the above expression to define a symmetric cubic form on any Codazzi-(para-)
Kahler manifolds.

4. Summary and Discussions

It is a well-known fact that a (para-)Kéhler manifold (M, g, L) (with L = J, K)
is characterized by the existence of a torsion-free connection V that renders
both g and L parallel. In this paper, we relaxed the parallelism condition to
the Codazzi couplings of V with g and L. We first showed in Proposition 2.6
that for any torsion-free connection V, its Codazzi coupling with a quadratic
operator L (for which J and K are special cases) leads to the integrability of
L, and hence transversal foliations on M. Then we showed, in Theorem 3.2,
Theorem 3.4 and Corollary 3.6, that Codazzi coupling of V with any two of
the compatible triple (g,w, L) implies its coupling with the third, giving rise
to Codazzi-(para-)K&hler structure on the manifold. In particular, a manifold
(M, g,w,V) is Codazzi-(para-)Kéahler if (M,w, V) is Fedosov and (M, g,V) is
statistical, provided that there exists an almost (para-)complex operator L on
M compatible with both g and with w. This points at complementary status
of symplectic structure and statistical structure in making up a (para-)Kéhler
structure. In particular, g-conjugation V* of a connection is exactly the L-
gauge transformation V¥ for L = J, K when V is symplectic with respect to
the compatible w. Our investigations about Codazzi coupling of V illuminate
how a torsion-free connection V may fit snugly within the compatible triple
on a (para-)Kéhler manifold M, such that M accommodates a “compatible
quadruple” (g,w, L, V).

Codazzi coupling is the cornerstone of affine differential geometry (e.g.,
[12-14,19]), and in particular so for information geometry. In information
geometry, the Riemannian metric ¢ and a pair of torsion-free g-conjugate
affine connections V, V* are naturally induced by the so-called divergence (or
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“contrast”) function on a manifold M (see [1]). While a statistical structure
is naturally induced on M, the divergence function will additionally induce
a symplectic structure w on the product manifold M x M, see [2,27]. Fur-
thermore, Zhang and Li [27] imposed conditions on divergence functions to
make the induced symplectic structure compatible with an almost complex
structure J in order to obtain a Kahler structure. Our results here provide a
complete answer to the question of precise conditions under which a statistical
manifold could be “enhanced” to a Kéhler and/or para-Kéhler manifold, and
clarify some confusions in the literature regarding the roles of Codazzi coupling
of V with ¢ and with L in the interactions between statistical structure (as
generalized Riemannian structure), symplectic structure, and (para-)complex
structure.

Codazzi-(para-)Kéahler manifolds are generalizations of special Kéahler
manifolds by removing the requirement of V to be (dually) flat in the lat-
ter. Special Kéhler manifolds are first mathematically formulated by Freed [5],
and they have been extensively studied in physics literature since 1980’s. For
example, special Kéhler structures are found on the base of algebraic inte-
grable systems [4] and moduli space of complex Lagrangian submanifolds in
a hyperkéhler manifold [9]. From the above discussions, we can view special
Kahler manifolds as “enhanced” from the class of dually-flat statistical man-
ifold, namely, Hessian manifolds [20]. In information geometry, non-flat affine
connections are abundant—the family of V(® connections (15) associated with
a pair of dually-flat connections V, V* are non-flat except & = £1 [25], forming
a-Hessian manifold [28]. Our analysis (in Sect. 2) clearly shows that it is the
preservation of torsion under the conjugate/gauge transformations of V (by
g,w, L) that highlights the essence of Codazzi coupling (of each) with such V.
So our generalization of special Kéhler geometry to Codazzi-Kéhler geometry,
which shifts attention from curvature to torsion, may be meaningful for the
investigation of bidualistic geometric structures in statistical and information
sciences [24,26].
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