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REFERENTIAL DUALITY AND REPRESENTATIONAL
DUALITY ON STATISTICAL MANIFOLDS

JUN ZHANG

1. BACKGROUND AND GOALS

Let M, denote the space of probability density functions p : X - R.(=R*U
{0}) defined on the sample space X’ with background measure dp = p(d¢)

M, = (p(¢) : Ex{p(¢)} = 1; p(¢) >0, V(€ A},

where E,{-} = [,{-} dp denotes the expectation with respect to the background
measure ;1. We assume that M), is a differentiable manifold under a suitably chosen
topology [1). A parametric family of density functions, called a parametric statisti-
cal model, p(-|6), is the association, for each n-dimensional vector 6 = {6t,---,0,
of a density function 8 — p(-|6) such that

Mo = {p(ClB) M, :0€OCR}C M,

forms a manifold. In classical information geometry, there are two core interrelated
concepts: the first is the notion of a divergence function (or functional), defined
on Mg x Mg {or on M, x M,,) that is non-negative and vanishes only on the
“diagonal” points (see below); it measures the directed (asymmetric) “distance”
between two points at large on the manifold. The second is the notion of a metric
and a pair of dual connections on My (or M,,), locally measuring distance as well as
angles and defining parallelism, respectively. These two core concepts — divergence
and geometry — are intimately related, as we review below.

1.1. Divergence function(al)s and the geometry they induce. Take the fa-
miliar example of Kullback-Leibler divergence (a.k.a. KL cross-entropy) between two
probability densities p,q € M,,, here expressed in its extended form (i.e., without
requiring p and q to be normalized)

K(p,q) =E, {q—p—plog%} = K*(q,p),

with a unique, global minimum of zero when p = g. More generally, one-parameter
families of divergence have been introduce, such as the family of a-divergence

4 - l1+a 1—a lta
(a) O e 4 —g—p 3
M A (p,q)—l_aaEu{ 5 Pt 5 1P q=},
and the family of Jensen difference (2]
4 l—-a l1+a
(a) - e e
I p,q) = l_azEu{ 5—plogp+ —5—qlogq

1-a l+a l-a l+a
(2) —(“‘2 Pt 3 ”)bg( 7 Pt 3 ”)}
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It is easily seen that
al_i‘rr_x‘A(“)(p,q) = ii_.mxj(a)(”"’) = K(p,q) = K*(g,p);
lim A (p,q) = Jim J‘“’(p,q) = K*'(p,q) = K(q,p)-

Eguchi [3], working in the setting of parametric statistical models, showed that
any divergence function D(p,q) (that is differentiable in its arguments up to third
order and that satisfies D(p, q) > 0 with p = q as the only global minimum achieving
the equality with vanishing first order derivatives) induces a Riemannian metric g
and a pair of connections I, I"* (given in local coordinates):

©)] %ij —(8:)p (85)e D(Pr D) g 5
(4) Tije —(:)p (B5)p (Bx)e PP, )=y 5
(5) Thx = —(B)q(05)q (0e)sD(P, )y »

where (8;), denotes 8/66° applied to the expression p(|6) only. Explicitly calcu-
lated using a-divergence A(®), they are

ol 8) dlo (]

550) = { (i 2oap o) 2hoercO)

re@ = E —a alosp(c 16) dlogp(¢|6)  &%logp(C16) Bp(£16)

Tiik - F 2 o8 007 00007 o6+ !

r@g = g, { (L2 dler(]6) dloep(lh) 4 Ploep(<16) op(<10)

Tise -k 2 o0t 07 99'067 o6* )
We note I“'J(i)(O) = I“(;,‘:)(O). For Jensen difference J(®, the metric is also g;;(6),
but the connections are I"ffk)(ﬂ), i.e., conjugate to those induced by .A().

The metric g and the pair of connections I'®),I'*(®) as derived above satisfy
Orgij = iy + Thji-

By definition, such T', T are said to be “dual” [4}, [5] or “conjugate” [6] with respect
to the metric g, and that (M,, g, T',I'*) forms a “statistical manifold.” In this sense,
the Eguchi relations (3)-(5) generate, from an arbitrary divergence function D, the
dualistic geometry of a statistical manifold.

The goal of the present work is to investigate the notion of duality in information
geometry by elucidating the precise meaning of the o-parameter under different con-
texts, and to extend information geometric formulation to the manifold of Banach
space functions in general (i.e., without the normalization and positivity constraints
associated with probability density functions). In particular, we give explicit ex-
pressions of Fisher metric and a-connections for an infinite-dimensional manifold
M of suitably normed Banach space functions. This is achieved through first con-
structing some generalized expressions of divergence functions and then exploiting
the coordinate-free version of the Eguchi relations (where covariant derivatives are
denoted as V, V*):

(6) g(u,v) = —(du)p(dv)e D(P,),ey 5
(7) 9(Vuwu, v) = -(dw)r (du)P (dv)q D(p, q)lpgq H ‘
(8) 9w, Vov) = —(du)q(dv)q (du)p D, @),y »

where dy, d,, dy, are directional derivatives along respective tangent directions de-
noted by u,v,w € T,(M). As an additional consequence of our approach, we clarify
two different senses of duality in information geometry, namely, a duality related
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to the choice of the reference versus the comparison point on the manifold (“refer-
* ential duality”) and a duality related to the choice of a monotone function from a
pair of conjugate ones to scale the probability density functions ( “representational
duality”) — their meanings will be made precise in the following,

- 2. D*)_DIVERGENCE AND THE INDUCED GEOMETRY

2.1. Fundamental convex inequality and divergence. Recall the notion of a
(strictly) convex function f: R — R defined by:

l-a l1+a l-a 1+a
r(F52 v+ H0e) < 15+ 2 ),

for all 4,4 € R satisfying v # § and any a € (—1,1), with equality replacing the
inequality when vy = 4. Treating v, as the values of two functions p,q: ¥ — R
evaluated at any particular sample point ¢ € X, i.e., v = p({), § = (), allows us
to define the following family of divergence functionals on the set By, of (-functions
(here a {-function is one mapping X — R, and p: R — R is strictly increasing)

By, = {p(Q) : Ex{f(p(p))} < 00} .

Lemma 1. Let f,p be two functions as defined above. For any two {-functions
pq: X =R and any a €R,

is non-negative and equals zero if and only p(¢) = q(¢) almost surely.

The family (parameterized by a) of divergence functional D{®), in which rep-
resentational duality is embodied as D}""z (p,q) = D};a) (q,p), was first introduced
in [7]. The function p is invoked to implement the notion of conjugate-scaled rep-

resentations, see the next subsection.

2.2. Conjugate-scaled representations of measurable functions. Recall that
for a strictly convex function f : R — R, the Fenchel conjugate f* : R — R is given

by

ORI R ORS (FmdU)B
with (f*)' = (f')~1. Now we introduce the notion of p-representation of a {-function
p(-) as a mapping p — p(p) using a strictly increasing function p: R — R. We say
that a T-representation of a {-function p — 7(p) is conjugate to the p-representation
with respect to a smooth, strictly convex function f : R = R if

(@) = f'(p()) = ((7*)) " o(®)) — () = (F) 7 (v(®)) = (f*) (+(D)) .
(Here and below, A — B is taken to mean “identity A, or equivalently identity
B holds.”) For example, take the a-embedding function [{*) defined as

logt a=1
(9) 1@ (t) = t a=-1
2o t'T a#4l

and introduce an auxiliary strictly convex function A(®) defined by

et a=1
,\(")(t) - tlogt — t__;_ a=-1
e (127" a#l

Then, with respect to f(t) = Aa) (1) — f*(t) = A(‘“)(t), the scalipg functions
p(p) = I®(p) — 7(p) = I{=*)(p) form a conjugate pair; this will be called the
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canonical a-scaling. In this case, the divergence functional D}fg (p,q) or D;f?, (p,9)
is homogeneous in p, q, since

P a=1 plogp—p a=1
f(p(p)) =< plogp—p a=-1 «— f*(r(p)) = P a=-1
{ thp a#zl =p a#zl

2.3. Geometry induced by the D(?)-divergence. We assume that the set By,
of (-functions, under a suitable topology, forms a manifold M of infinite dimensions.
A point zo on M is a specific (-function p : { — p(¢) defined for all ¢ € X. Any
function p — F(p) on M is referred to as a (-functional, because it takes in a
¢-function p and outputs a number. The set of smooth (-functionals on M is
denoted as F(M). A curve on M passing through a point p is nothing but a
one-parameter family of (-functions, denoted as p(¢|t), with p(¢|0) = p. Here |t
is read as “given ¢, that is, p(¢|t) is a (-function “parameterized” by ¢ — a one-
parameter family of (-functions is formed as t varies. More generally, p(¢|6), where
6=[6',---,6" € OCR" isa ¢-function indexed by n parameters 6',--. ,6". As
6 varies, p(¢|6) represents an embedding Mg C M where

Mo={p(Clf) e M:0€OCR"} C M.

They are referred to as parametric models (and parametric statistical model if
p(¢]6) is normalized and positively valued).
In the infinite-dimensional setting, the tangent vector v, defined as
Op(Clt)
()= ——|
ot t=0
is also a (-function. Consider the {-functional in the following form:

F(p) = /x F(()) di = B, {f ()}

When the tangent vector v operates on F(p), utilizing the expansion p(C|t) = p({)+
v(¢)t + o(t?), we have

() = Yy IV ZECLOD _ [ 150 () = B, ) ),

the outcome being another (-functional of both p(¢) and v(¢), and linear in the
latter.

A vector field in the infinite-dimensional setting, as a cross-section of TM , takes
in a (-function and outputs a (-function. We denote a vector field as u((lp) €
Z(M), where the variable following the “|” sign indicates the dependency on the
point p(C), an element of the base manifold M. Take, for example, u(¢|p) = p(p(0))
as the vector field. Its directional derivative dyu in the direction of v (which is a
(-function) at the base point p (which is another ¢-function) is

Note that d,u is another (-function; that is why we can write dyu(¢|p) also as
(dvu)(¢). With differentiation of vector fields defined, one can define the covariant
derivative operation V,,. When operating on a ¢{-functional, covariant derivative is
simply the directional derivative (along direction w)

VuF(p) = duF(p).
When operating on a vector field, say u({|p), Vy is defined as (see [8))

(Vwu)(¢) = (dwu)({) + B({lw(CIp), u(¢lp))
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where B : £(M)xI(M) — (M) is a tensor field which is bilinear in the two vector
fields w and u (which are p-dependent (-functions); it is the infinite-dimensional
counterpart of the Christoffel symbol I' (used for finite dimensions).

With the above preparations, we now apply (6)—(8) to D}‘z.
Theorem 1. At any given p € M and for any vector fields u,v € (M), the
induced metric tensor field g : £(M) x T(M) — F(M) and the induced covariant
derivatives: V,V* : L(M) x E(M) — E(M) are

guw,v) = Efg@Q)ullpvCln}:
V®u = (dyu)(¢) + B (p(())u(¢lpyw(Clp),
where
a(t) = ")) = A7)

Bt = I;O’f ”},’,’&)()t’)’;(t) + ’:,’((tt)) = % (1 ‘;a log p/(¢) + = = logr'(t)) :

Furthermore, viady = vy,

Note that the g(p) term and the B(®)(p) term depend on p, the point on the
base manifold, at which the metric and covariant derivatives are evaluated.

It is immediately evident from Theorem 1 that the Riemannian metric induced
from ’D}:’g (p, ) and the one induced from D(ﬁ?, (p, q) are the one and the same for
all o values, while the connections (covariant derivatives) induced from these two
families of divergence are mutually conjugate in the sense of o & —a. (Here and
below, a « b indicates the exchange of the two variables a and b.) This implies
that the conjugacy in the pair of connections is related to both referential duality
(duality related to p « ¢ in the expression of divergence) and representational
duality (duality related to the p < 7 in the induced geometry).

With respect to the o-family of covariant derivatives V(@ it can be shown
that (i) the Riemann curvature tensor R9{(y,v,w) = 0; (ii) the torsion tensor
T(®)(u,v) = 0. In other words, the ambient manifold M has zero-curvature and
zero-torsion for all a. As such, any curvature on the manifold M,, of non-parametric
probability density functions or the manifold My of parameterized densities may
be interpreted as arising from embedding of or restriction to a lower dimensional
space.

2.4. Canonical divergence. When limg .+ 'D(f‘,’g (p,q) or img_41 D(f‘f?, (», 9),
D(,,',,’)(p, )] E.{f(0(q)) — f(p(p)) — (p(q) — p(P)) ' (p(P))}
= EJf ) - £1r@) - (7o) = 7(@)(7*) ((@)} = D} (a.p)
DNpg) = Eu{f(p(p) — Flol@) - (o(p) — (@) £ (p(0))}

= Ef'(r(g) - F1r®) = (1) — T@)(*) (7))} = DY (a,p) -

The canonical divergence functional A: M x M — Ry is defined as
Az (p(p), (9)) = Eu{f(p(p)) + £*(7(2)) — p(p) ()} = As-(r(9), (D)) »
such that
D (p,q) = DY, (0,p) = DY, (0,9) = DY )(pr0)
= Ag(p(p), 7(2)) = As=(7(9), (D)) -

We remark that under canonical a-scaling, Ay is simply the a-divergence proper

A Ay (p(p), 7(a)) = A (p,9) -
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2.5. Finite-dimensional parametric models. The manifold Mg of parametric
models is indexed by 8 = [, -- ,8"] € © C R", called the natural parameter. The
tangent vector fields u,v,10 of M in the directions that are also tangent for Mo (or
M) take the form

I S (4L)

o ' o6k

For convenience, we denote pp = p(p(¢]6)), 7» = 7(p(¢|6)). The divergence func-
tional then becomes a divergence function on © x ©.

)

oo B

Theorem 2. The metric tensor and the affine connections on the manifold Mo of
parametric models take the form

N . f 8pp O,
10) 00 = £ {1 o 22 2} =1, {2 251

, l-o dp, Op & 8
bﬂ{( 9 fm(pﬂ)_ég%gég"{'f”(pr) 30';;1) 5%})
- K l1-a 821',_ Opp  1+a aﬁpz Orpy
e 2 0686 o9* 2 06991 96 |’

with T3\ (8) =T 2(6).

11) e

i,k

Just as in the infinite-dimensional case, if we construct the divergence function
D;‘f?, (6,,8,) on © x O, then the induced metric will be the same as the g given by
(10), while the induced connection will be conjugate to the one given by (11), i.e.,
[*(@) = (=) — in other words, I' = I'* reflects, in addition to referential duality
6, «+ 8,, representational duality between p-scaling and 7-scaling of a (-function
Pp < Tp.

3. Two SPECIAL CASES AND THEIR INDUCED GEOMETRIES

3.1. Case I: Homogeneous (o, )-divergence. Under the canonical o-scaling
(see Section 2.2) but expressed using the symbol 3, the divergence functional be-
comes a two-parameter family

4 2 1-a +1+a_ 1-a 3;1g+1+a3_%2 s
—a31+ﬂ " p 14 —‘—"2 q

(e,8) =

D) =g 2 2 )

where (a, ) € [~1,1] x [~1,1]. This homogeneous divergence (invariant against
a change of background measure) is called the (o, B)-divergence; it belongs to the
general class of f-divergence studied by [9]. Note that the a parameter encodes
referential duality, and the 3 parameter encodes representational duality. When
either o = £1 or 8 = 1, the one-parameter version of the generic alpha-connection
results. The family D(@f) is then a generalization of the a-divergence (1) and the .
Jensen difference (2) with

lim D@A(p,q) = AP(pq), limDI(p,q)=ADp,q),
lm DA pg) = Apa), Jim DDipg) = TV (p.a).

Theorem 3. The metric g and covariant derivatives V(B associated with the
(a, f§)-divergence are given by

(1
o = sfbee]
VN = dw— 2%y,

2p
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with V*(@A) = y(-af) = yl@-h) qndy v e Z(M). Their parametric counter-
parts are

, dlogp Blo
OISR - -

(@0) o &logp , 1—ap dlogp Blogp\ bp
T 6) = b, {(ao-aa:* 2 o0 o8 )oer] "

with T{37(6) = T2 (6) =T3P ).

This is to say, with respect to the (a, 8)-divergence, the product of the two
parameters af acts as the “alpha” parameter in the family of induced connec-
tions; setting limg_.; V() or limg—.; V(*9 yields the one-parameter family of
a-connections. Note, due to (11), the two ways to reduce to the alpha-connections
(indexed by S here to avoid confusion): (i) take a = 1, and p(p) = 19 (p) and
7(p) = =P (p); or (ii) take a = —1, and p(p) = I=#)(p) and 7(p) = 19 (p).

.3.2. Case II: Affine embedded submanifold. We now define the notion of p-
affinity. A parametric model p((|#) is said to be p-affine if its p-representation
can be embedded into a finite-dimensional affine space, i.e., if there exists a set of
linearly independent functions A;(¢) over the sample space X’ 5 ¢ such that

pP(CI8) = O N(O);

here the parameter § = [6!,--- ,6"] € O is its natural parameter, and the functions
A1(€),- -+ , M (C) are the affine basis functions.

For any measurable function p(¢), the projection of its T-representation onto the
functions A;(¢)

- [ (o(Q)) M(C) du
P 4

forms a vector n = [y, -+ ,7,] € E C R™; 1) is the expectation parameter of p({).
The above notion of p-afﬁmty is a generalization of o-affine manifolds [5], [10]
defined as (recall 9)

1=p) = 3 6N(0);

here p- and T-representations are just I{® and 1(~9), respectively.
When a parametric model is p-affine, the function

2(6) = [ f(olo(cI6))d
can be shown to be strictly convex. Furthermore, define
8(6) = [ 1ro(I0)) dis,

then the function

&*(n) = 2((02) ' (n))
can be shown to be the Fenchel conjugate of () (here 3 is the gradient operator).
The convex functions @, ®* form a pair of “potentials” to induce 7, 6:

8 = (8%*)(n) = (89) ' () +— n=0%(6) = (62°)71(8) .
Theorem 4. For p-affine manifold,
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(i) The divergence functional D(,‘,’z (p,q) then takes the form of the divergence
Junction D‘(:)(G,, 6,) given by

4 l1—-a 1+ l-a l+a
DS (65,00 = 1= (—Z—tb(@p) Bl } o= (Ta, + —2-0«;)) ;

(ii) The metric tensor g;;, the affine connections FS:L and their Riemann cur-
vature tensors R(®). take the forms

ijpv
a 1-a *(—a
9ii(0) = ®ij; Fs_,-,l(g) = —5 Pux = F.-j(,k )(8);
1-a? *(a
Rg?ﬁu(") = 1 Z(‘I’ilu‘pjku —‘bilqukV)q”k = i}yl(g) .

, 1k
(iii) The manifold is equiaffine, with a-parallel volume form w(® given by
w(°’) = (det q),'j)l—gg .
Here, ®;;, d;ji denote, respectively, second and third partial derivatives of ®(6)
8%®(9) o 3d(0)
o6°00i * T pgiasiont

and &Y is the matriz inverse of ®;;.

®;; =

Note that the expressions for ['® and R(® in the form of (ii) and for w(®) in
the form of (iii) were previously given, respectively, by [5] (p.106) and by [11], both
for the exponential family (manifold). Here their applicability is generalized to any
p-affine manifold. '

A special case arises when a = *1, where the connections are curvature-free
Rfﬁ‘l,,) (6) = 0. This is the well-studied “dually flat” parametric statistical mani-
fold [5], [10], under which divergence functions have a unique, canonical form.

Theorem 5. When a — 1, D,(,") reduces to the Bregman divergence By

D§(8,,8,) = D§)(8e,6,) = ®(8g) — B(6y) — (8 — 65, 09(6,)) = Ba(6y,65),
D (8,,0,) = DSV(64,8,) = @(6,) — B(8,) — (B — 0, 09(6,)) = Ba(65,6,),
or equivalently; to the canonical divergence functions
Dg)(am(a@)—l(”q)) = ®(6,) + 2 () — (6p,mq) = Aa(6p,70),
DSV((08)7(65),8s) = ®(8)+ % () — (s 0e) = As= (1, 0o)

where (-, -) denotes the standard inner product of two vectors.

We remind the readers the two different kinds of duality associated with the
divergence defined on a dually flat statistical manifold, one between D((;l) > Dg)
and between Df;l) - Dg.), the other between Df;l) - Df;.l) and between D,(,,1 ) o
Dg.) . The first kind is related to the duality in the choice of the reference and the
comparison status for the two pointa (6, versus 8;) for computing the value of the
divergence, and hence called “referential duality,” The second kind is related to the
duality in the choice of the representation of the point as a vector in the parameter
versus gradient space (8 versus 1) in the expression of the divergence function, and
hence called “representational duality.” More concretely,

D (6,,0,) = DS (69(8,), 08(65)) = D52 (09(6,),02(8,)) = D3 (65, 65) -
The biduality is compactly reflected in the canonical divergence as

Az (0, nq) = Ap- (g, 0,) )
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4. SUMMARY AND FUTURE DIRECTIONS

This paper constructs a family of divergence functionals, induced by a smooth
and strictly convex function, to measure the asymmetric “distance” between two
functions defined on the sample space. Subject to an arbitrary monotone scal-
ing, any such divergence functional induces on the Riemannian manifold of non-
parameterized functions a metric tensor generalizing the conventional Fisher infor-
mation metric and a pair of conjugate connections (covariant derivatives) gener-
alizing the conventional (+a)-connections (note that compared with [12] and [13],
the current representation is more explicit). Such manifolds manifest biduality:
referential duality (in choosing a reference point) and representational duality (in
choosing a monotone scale). The (a, 8)-divergence we gave as an example of this
bidualistic structure extends the alpha~divergence proper, with a and 3 represent-
ing referential duality and representational duality , respectively. It induces the
conventional Fisher metric and the conventional a-connection (with of as a single
parameter). Finally, for the p-affine submanifold, a pair of conjugate potentials
exist to induce the natural and expectation parameters as biorthogonal coordinates
on the manifold.

Our approach demonstrates an intimate connection between convex analysis and
information geometry. The divergence functionals (and the divergence functions in
the finite-dimensional case) are associated with the fundamental inequality defining
a convex function f : R — R (or ¢ : R® — R), with the convex mixture coefficient
as the a-parameter in the induced geometry. Referential duality is associated with
‘a & —a, and representational duality is associated with convex conjugacy f « f*
(or @ « @*). Thus, our analysis reveals that e/m-duality and (+1)-duality that
were used almost interchangeably in the current literature are not the same thing!

It should be noted that, while any divergence function determines uniquely a sta-
tistical manifold, the converse is not true. Though a statistical manifold equipped
with an arbitrary metric tensor and a pair of conjugate, torsion-free connections
always admits a divergence function [14], it is not unique in general, except when
the connections are dually flat (traditionally, o = +1), for which canonical diver-
gence is uniquely determined. In this sense, there is nothing special about our
use of D{%)-divergence apart from it being a generalization of familiar divergence
families (including a-divergence in particular). Rather, D(®)-divergence is a vehicle
for us to derive the underlying Riemannian geometry with dual connections. It
remains to be elucidated why the convex mixture parameter turns out to be the
a-parameter in the family of connections of the induced geometry — our generaliza-
tions of t he Fisher metric and of conjugate a-connections hinge on this miraculous
identification.
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