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Abstract. Heiligenberg (1987) recently proposed a
model to explain how the representation of a stimulus
variable through an ordered array of broadly tuned
receptors could allow a degree of stimulus resolution
greatly exceeding the resolution of the individual recep-
tors which make up the array. In his model, this
“hyperacuity” is achieved by connecting the receptors
to a higher level pool interneuron according to a linear
synaptic weighting function. We have extended this
model to the general case of arbitrary polynomial
synaptic weighting functions, and showed that the re-
sponse function of this higher level interneuron is a
polynomial of the same order as the weighting function.
We also proved that Hermite polynomials are eigen-
functions of the system. Further, by allowing multiple
interneurons in the higher level pool, each of which is
connected to the receptors according to a different
orthogonal weighting function, we demonstrated that
extended stimulus functions can be represented with
enhanced precision, rather than just the value of indi-
vidual point stimuli. Finally, we suggest a solution to
the problem of “edge effect” errors arising near the
ends of finite receptor arrays.

1 Introduction

Sensory systems have evolved to detect and analyze the
parameters of external stimuli that vary over extremely
broad ranges. Although stimulus parameters vary as
continua, the sampling of stimulus functions by a ner-
vous system is necessarily discrete, due to the finite
number of sensory receptors available for any particu-
lar modality. Questions concerning the inherent limits
of resolution in sensory systems have challenged re-
searchers for decades. In particular, how is the ability
of a sensory system to detect fine differences in a
stimulus parameter constrained by the relative spacing
or “density” of the receptors with respect to that
parameter? How is this systematic resolution limited by
the resolution or the width of the tuning curves of the

individual receptors that make up the primary sensory
array? A somewhat surprising result that has emerged
from studies of many different vertebrate and inverte-
brate sensory systems is that the degree of stimulus
resolution observed at the behavioral level generally
exceeds the resolution of the individual receptors by a
substantial margin. The term “hyperacuity” was coined
by Westheimer and colleagues (Westheimer 1975; West-
heimer and McKee 1977) to describe such phenomenon
in their investigation of the human visual system using
the approach of psychophysics. They showed that hu-
mans could resolve two line stimuli with a spacing far
less than the spacing of photoreceptors in the retina.
These studies have stimulated a great deal of work
by neurophysiologists and engineers who would like to
understand the biological circuitry underlying such hy-
peracuity phenomena. In numerous experimental stud-
ies, stimulus parameters such as the spatial location of
a visual or auditory point source have been shown to be
“mapped” continuously within layered arrays of neu-
rons (see Konishi 1986; Knudsen et al. 1987 for recent
reviews). Generally, in these neural maps, each neuron
can be characterized in terms of 1} its peak tuning to
the relevant sensory parameter (in the above case: the
optimal spatial location of the point source) and 2) the
width of its tuning curve (i.e., the distance away from
the optimal spatial location at which a stimulus would
elicit a response equal to some pre-defined fraction of
the peak response). Adjacent receptors naturally have
slightly different peak tuning points and generally have
broadly overlapping tuning curves with respect to the
inter-receptor spacing. As a consequence of this ordered
representation of a stimulus variable in the neural map,
the presentation of an extended stimulus (such as a
visual image) will result in the generation of a corre-
sponding unique spatial pattern of activity in the neural
array. Therefore, higher level interneurons access infor-
mation about the simulus by virtue of 1) the location of
their dendrites within this neural map, and 2) the
relative synaptic strengths or “weights” of inputs from
different afferent nerve endings in the map. For in-
stance, Blasdel and Fitzpatrick (1984) demonstrated
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that in the input layers 4Ca and 4CpB of the monkey
primary visual cortex, the resolution of the retinotopic
map is much finer than the radius of arborization of
individual afferent fibers from lateral geniculate nuclei,
and that this degree of resolution is maintained for both
types of afferents (parvocellular and magnocellular)
despite the very different sizes of their terminal endings.
It was thus suggested that “‘the precision of mapping
might relate more directly to the arrangement and
homogeneity of dendritic fields than to the terminal
field sizes of the afferent axons”. With these general
experimental results in mind, one aspect of the resolu-
tion questions stated above can be rephased as follows:
How does the sensitivity of a higher level interneuron to
changes in a sensory parameter depend upon 1) the
inter-receptor spacing, 2) the shape of the receptor
tuning curves, and 3) the weighting function by which
the synaptic strengths of different receptors in the array
are coupled to the higher level interneuron?

The issue of this generalized ‘“hyperacuity” was
recently explored by Heiligenberg (1987). In his model,
an array of receptors (with Gaussian-shaped tuning
curves) were distributed uniformly along the entire
range of a stimulus variable. Each receptor contributed
excitation to a higher level interneuron, with the synap-
tic weight of each receptor’s input set proportional to
its rank index in the receptor array. In other words, the
synaptic weight between a receptor at one end of the
array and the higher level interneuron would be rela-
tively weak, but the weight of the synapses would
increase in a linear fashion for the receptors progres-
sively farther across the array. The receptor at the far
opposite end of the array would have the greatest
synaptic weight onto the higher level interneuron. Nu-
merical simulation and subsequent mathematical analy-
sis of this model (Baldi and Heiligenberg 1988)
demonstrated that the response function of the higher
level interneuron was monotone increasing and surpris-
ingly linear, so long as the width of the receptor tuning
curve is much greater than the inter-receptor spacing.
The smoothness of this function could allow very pre-
cise values of a previously coarsely-coded stimulus
parameter (at the receptor level) to be “interpolated”
from the activity of the higher level interneuron,
thereby offering a partial explanation of the general
phenomenon of hyperacuity.

The main conclusion drawn from Heiligenberg’s
model is that hyperacuity may be achieved provided
that the receptors have sufficiently broad tuning to the
stimulus. Does this conclusion depend on the particular
choice of synaptic weighting scheme (linear weighting
in this case)? Is the hyperacuity thus achieved limited to
the localization and discrimination of point stimuli
only? We address these two questions in the present
paper. First, we consider the case of applying certain
weighting functions as natural generalizations to Heili-
genberg’s linear weighting model. We prove the validity
of the model by showing that the response of the higher
level interneuron, to which the receptors are connected
via polynomial weighting functions, is also a polyno-
mial function of the same order, but usually with

different coefficients. A logical question to ask, then, is
what kind of polynomial weighting function would
result in an identical response function for the higher
level interneuron? This leads to the second point of the
paper: we prove that when a Hermite polynomial is
used as synaptic weighting function, the interneuron
response would be the same Hermite polynomial. In
other words, Hermite polynomials are “eigenfunctions”
of the system, and the linear weighting function is
simply the Hermite polynomial of order one. As a third
point of the paper, we propose a scheme of resolution
enhancment in representation of extended stimulus
functions (stimulus patterns) instead of point stimuli as
in Heiligenberg’s original model. We suggest that if the
higher level pool contains several interneurons, each of
which is connected to the receptors array via a different
(yet mutually orthogonal) Hermite polynomial weight-
ing function, then any extended stimulus may be
uniquely and completely represented by the collection
of higher level interneurons. Finally, we address the
problem of “edge effects” errors introduced near the
ends of a finite receptor array by considering alternative
weighting functions that vanish at infinity.

2 Polynomial weighting functions

Following Baldi and Heiligenberg (1988), we consider a
one-dimensional array of sensory receptors with Gaus-
sian-shaped tuning curves distributed uniformly along
the entire range of a stimulus variable x. The Gaussian
width of the receptor tuning curves will be defined as d,
the inter-receptor spacing as a, and the rank index of
each receptor in the array as k. The weighting function
w(k) represents the synaptic strengths of the k-th recep-
tor onto a higher level interneuron. We wish to express
the response function f(x) of the higher level interneu-
ron in cases where the given weighting function w(k) is
non-linear in k.

We first consider the most natural generalization:
the power weighting function w(k) = k?, where p is any
positive integer. Note p =1 reduces to Heiligenberg’s
original model. We follow their notations and, without
loss of generality, assume a =1 (i.e. simply choose a as
the measuring unit).

Statement 1: For positive integer p, the sum
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can be approximated by a polynomial of order p, pro-
vided that d is sufficiently large.

Proof. By applying the binomial expansion formula
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That is, 4;(x) has a period of 1.
We know that any periodic function can be expanded
into its Fourier series. In the present case,
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where the derivatives of the Gaussian function were
expressed using the well-studied Hermite polynomials
H;(x) (see Appendix):
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Rearranging the terms of summation and taking into

account H;( — x) = ( — 1)/H,(x) and that H;(0) =0 (for
odd j) or ( — D311 (for even j), (4) then becomes

Af(x)=<%> <Hf<0)+ Y e~ "D’H,(mnd)

m=1

X (et2nmx +( _ l)je—ﬁnmx) )

(AN B (141 =
-(2>{(,~/2)!< )2 3,

xe~ ™[ (mnd) cos ( 2mnx —j%) } . (6

Now we take a closer look at the above expression.
Since the absolute value of H;(mnd) is bounded by
1.086 /! 2112 emmd?2 (see Appendlx), and the absolute
value of cos(x) is bounded by 1, we can see that as d
becomes sufficiently large, only terms of m = 0 with even
J dominate in the curled bracket of (6). Therefore
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implying that all 4; are, in the above limiting case,
constants rather than functions of x. Substituting them
into (1) proves our Statement 1.

Statement 2: The polynomial in Statement 1 must take the
Jollowing form:
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where a; are constant coefficients.
Proof. This is obvious, in view of (7) in the proof of

Statement 1. Alternatively, we can prove Statement 2 by
noting the parity of f(x) with respect to x:
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which means that, with respect to the argument x, f(x)
must be an even function for even integer p and an odd
function for odd integer p.

Statement 3: [f, instead of w(k)
alized weighting function
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polynonials, and a; # c; in general.
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Proof: This is immediately evident from Statement 1
and Statement 2 above, since f(x) is linearly dependent
on w(k). That is to say, if
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3 Hermite polynomials as eigenfunctions

Statement 3 says that if the synaptic weighting as a
function of receptor index is a polynomial function w(k),
then the response of the interneuron as a function of
stimulus location would also be a polynomial function
f(x) of the same order. However, the coefficients of the
two polynomials may not be equal. Naturally we want
to know what kind of the polynomial w(k) will result in
a polynomial f(x) with identical coeflicients. In a sense,
we are looking for the “eigenfunction” of the system.
The conclusion is provided by the following statement:

Statement 4. For w(k) = H,(k/\/2d), the sum

£.(5) ()

can be approximated (when d is sufficiently large) by
H,(x/d), where H,(x) is the p-th order Hermite polyno-
mial.
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Proof. Note the following formula for Hermite polyno-
mials (see Appendix):
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Here we already made use of (5). Integrating by part in
succession for j times, and keeping in mind that (see
Appendix)
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For j =0, the value of B, is easily obtained as
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By arguments analogous to the proof of Statement I,
we have, for sufficient large d,

B,~1,B;~0. (19)

It follows from (13) that f(x) assumes the same Hermite
polynomial form as in the weighting function:

() :2—p/sz(2>. (20)

That is to say, Hermite polynomials are the eigenfunc-
tions of the system. However, it is noteworthy that in
f(x) the argument of the Hermite polynomial is x/d,
and in w(k) itis k /(ﬁd). The first five polynomials are
given in the Appendix for reference.
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4 Interneuronal representation of sensory patterns

Heiligenberg’s model deals with the problem of two-
point resolution, i.e. how a sensory system can resolve
the location of a “point” stimulus with a precision
exceeding the interreceptor spacing. A point stimulus
has only a single stimulus value. A pure tone of a
certain frequency, or a point of light in the visual space
constitutes auditory or visual point stimuli, respec-
tively. Heiligenberg’s work and the results shown in



previous sections of this paper have demonstrated that:
a) if the sensory receptors array is connected to the
higher level interneuron via any weighting function
discussed above, and b) if the tuning width of each
sensory receptor is sufficiently larger than the inter-
receptor separation, then the interneuron would indeed
generate discernibly different responses to individually
presented stimuli which are different by an amount less
than the inter-receptor separation. The response as a
function of stimulus location is sufficiently smooth and
monotonous (i.e., without “ripples”) to allow reliable
interpolation into regions between the locations of the
two adjacent receptors (Heiligenberg 1987). Now we go
one step further to ask how an extended sensory stimu-
lus function (or sensory “pattern™) g(x) could be en-
coded and represented beyond the receptor level with a
solution exceeding the inter-receptor spacing. Here a
sensory pattern refers to a collection of point stimuli
distributed across the parameter range. A chord with
multiple frequencies, or an image of a face are examples
of such sensory patterns. We will show that if we have,
instead of a single higher level interneuron, a group or
“layer” of interneurons, each connected to the sensory
receptor array using some different yet appropriately
chosen weighting scheme w, (k), then the representation
of the sensory pattern by this interneuron group is
uniquely determined with enhanced resolution (see Fig.
1).

Suppose that 1) each interneuron in this higher level
group receives input from the array of sensory recep-
tors, with the synaptic weighting characterized by a
Hermite polynomial H,(k), and 2) the order p of the
Hermite polynomial is different for each interneuron
in this group. We recall that the family of Hermite
functions forms the basis function set (spanning the
entire Hilbert space) into which any function g(x) satis-
fying certain conditions can be expanded as (see
Appendix)

6 = T oty (5 )em e, 21

and is thus uniquely specified by the associated Hermite

INTERNEURON GROUP

RECEPTOR ARRAY

Fig. 1. A group of interneurons, each connected to the sensory
receptors array via some different yet mutually orthogonal synaptic
weighting function, are capable of encoding a sensory pattern with
enhanced resolution. Here, the weighting function for interneuron p is
the p-th order Hermite polynomial H,(k). It can be shown that the
response of this interneuron R, is proportional to the coefficient c, of
the Hermite expansion of any sensory pattern
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expansion coefficients
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Therefore the response of the p-th interneuron R,
whose weighting function is assumed to be Hp(k/ﬁd),
can be expressed as
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which is proportional to ¢,.

That the response of any interneuron to a stimulus
pattern as given above is proportional to the Hermite
expansion coefficient ¢, implies that any g(x) can be
uniquely represented by the response of this set of
interneurons {c, }. Note that the precision of represen-
tation at this stage is not limited by the receptor
separation, but by the total number of neurons avail-
able in this interneuron group. This number then deter-
mines the highest order of Hermite polynomial
weighting function required.

S Weighting functions without “edge-effects”

There are some intrinsic difficulties associated with
polynomial weighting schemes. A serious problem is the
so-called ‘“‘edge-effect” described as follows. Since any
biological receptors must actually be finite in number,
truncation of the summation series at some finite index
results in severe degradation of the interneuronal repre-
sentation of stimulus values near boundaries of the
receptor array. For instance, near either end of the
receptor array, the interneuron response f(x) in Heili-
genberg’s linear model would no longer be monotonous
and would have regions of degeneracy where adjacent
stimulus locations would yield identical responses. The
problem of edge-effects is well recognized by the origi-
nal authors (Heiligenberg 1987; Heiligenberg and Baldi
1988). This problem is unavoidable, so long as the
weighting function does not vanish at infinity. There
are at least two possible ways of handling this for
biological systems. In some situations, the stimulus
variations as well as the peak tuning points of the
receptor array ‘“‘wrap around” into a circular configura-
tion so that the summation of the receptor array is
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