Degree Bounds in the Nonmodular Case Invariant Theory

Moise Mouyebe
Advisor: Harm Derksen

Abstract

This paper is the sequel of the work done last year at the University of Michigan during the REU program and whose report can be found in [6]. First, We will present the degree bound problem and survey some relevant background results. Then, we discuss the geometry of subspace arrangements constructed via the regular representation of the underlying group as a possible solution to the problem, and we address some of the issues encountered along the way. Finally, we present our main result in which we derive a lower bound for the ring of invariants on the symmetric group on \(n \) symbols \(S_n \). More specifically, we show that \(\beta(S_n) \geq 1 + \binom{n}{2} \).

1 Introduction

Given a field \(K \) and a group representation \(\rho : G \rightarrow \text{GL}(V) \) of the group \(G \) on a finite dimensional vector space \(V \), we can extend the linear action of \(G \) on \(V \) to a linear action on the \(K \)-algebra \(K[V] \) of polynomial functions on \(V \) called the coordinate ring of \(V \). Invariant theory is concerned with the following subalgebra of \(K[V] \) called the invariant ring of \(G \):

\[
K[V]^G := \{ f \in K[V] \mid gf = f \quad \forall g \in G \}
\]

where, \(gf(v) = f(\rho(g)^{-1}v) \), \(\forall g \in G, v \in V \), and \(f \in K[V] \).

We say that we are in the nonmodular case invariant theory when the order of the group \(G \) is invertible in the ground field \(K \). For instance, such case arises when the ground field \(K \) is an extension of the field of rational numbers \(\mathbb{Q} \). Of special interest in invariant theory research are the following three questions: First, does the ring \(K[V] \) have a finite algebra generating set? Second, can we find priori bounds on the degrees of a minimal algebra
generating set of \(K[V]^G \)? Finally, Can we design “good” algorithms to compute systems of algebra generators for the ring of invariants?

The first question is closely related to D. Hilbert’s 14th problem (see [3]). Meanwhile, the second question is in essence the Degree Bound Problem.

One of the foundational work done to address this problem was by the prominent German mathematician E. Noether. For instance, in 1916 she showed [8] that if the group \(G \) is finite then the invariant ring \(K[V]^G \) is finitely generated as an algebra over the field \(K \), meaning we can always find finitely many invariants \(f_1, \ldots, f_s \) such that \(K[V]^G = K[f_1, \ldots, f_s] \).

We can now introduce the number \(\beta(\rho) := \max \{ \deg(f_i), 1 \leq i \leq s \} \), where \(\{f_1, \ldots, f_s\} \) is a minimal algebra generating set for \(K[V]^G \).

Hence, the Degree Bound Problem can simply be reformulated as: Find bounds for \(\beta(\rho) \). Another important result in positive characteristic [8] by E. Noether known as the Noether’s Bound stipulates that the ring of invariants \(K[V]^G \) is generated by invariants of degree at most \(|G| \), meaning we always have \(\beta(\rho) \leq |G| \).

Noether’s bound justifies the definition of the following number:

\[
\beta(G) := \max \{ \beta(\rho) \mid \rho \text{ finite dimensional representation of } G \}.
\]

Example 1.1. Let \(D_n \) be the group of symmetry of the regular polygon with \(n \) vertices, and let \(\rho \) be its two dimensional representation given by the matrices:

\[
\rho(r) = \begin{pmatrix} \cos\left(\frac{2\pi}{n}\right) & -\sin\left(\frac{2\pi}{n}\right) \\ \sin\left(\frac{2\pi}{n}\right) & \cos\left(\frac{2\pi}{n}\right) \end{pmatrix} \quad \text{and} \quad \rho(s) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

The ring of invariants \(\mathbb{R}[x, y]^{D_n} \) is generated as an \(\mathbb{R} \)-algebra by the homogeneous invariant polynomials \(x^2 + y^2 \) and \(\prod_{i=0}^{n-1}(\cos\left(\frac{2\pi i}{n}\right)x + \sin\left(\frac{2\pi i}{n}\right)y) \).

Hence, we have \(\beta(\rho) = n \). However, we have:

\[
\beta(D_n) = n + 1.
\]

Example 1.2. Let \(A_n \) be the alternating group on \(n \geq 2 \) symbols, and let \(\rho : A_n \to \text{GL}(n, \mathbb{C}) \) be its \(n \)-dimensional defining representation. One can verify that all the \(n \) symmetric functions \(e_1, \ldots, e_n \) are invariant under the action of the group \(A_n \). Furthermore, the polynomial \(\Delta_n = \prod_{1 \leq i < j} (x_i - x_j) \) of degree \(\binom{n}{2} \) called the Vandermonde determinant is also invariant under the action of the group \(A_n \). In fact, we have \(\mathbb{C}[x_1, \ldots, x_n]^{A_n} = \mathbb{C}[e_1, \ldots, e_n, \Delta_n] \).

Hence, \(\beta(\rho) = \binom{n}{2} \). This gives the following lower bound for \(\beta(A_n) \):

\[
\beta(A_n) \geq \binom{n}{2}.
\]
2 Survey of Some Results

Noether’s bound $\beta(\rho) \leq |G|$ is one of the fundamental results for the degree bound problem. In fact, it is now well established that the equality only holds when the group G is cyclic. The proof [11] of this statement is encoded in the following theorem:

Theorem 2.1. Let $\rho : G \rightarrow \text{GL}(V)$ be a finite dimensional representation of a finite and non-cyclic group G. Then, the ring of invariants $K[V]^G$ is generated by the homogeneous invariants of degree strictly less than $|G|$. That means we have $\beta(\rho) < |G|$.

Using Weyl’s theorem, B.Schmid [11] was able to establish that $\beta(G) = \beta(\rho_{\text{reg}})$, where ρ_{reg} represents the regular of the group G. It turns out that this result is very useful in practice when computing $\beta(G)$ explicitly. Furthermore, combining this result with Noether’s bound we deduce that the regular representation ρ_{reg} of the group G realizes the worst case analysis in solving the degree bound problem. Meaning that if we can find bounds for the regular representation of G, we can be confident that we have found bounds for any representation of G; at least in the nonmodular case.

Definition 2.2. Let $b_1, ..., b_s$ be nonzero elements of a group G (written additively). The equation $b_1 + ... + b_s = 0$ is said to be non-shortable if it has the property that for every nonempty strict subset $\{i_1, ..., i_s\} \subset \{1, ..., s\}$, we have $b_{i_1} + ... + b_{i_s} \neq 0$.

Theorem 2.3 (B.Schmid). Let G be a finite abelian group, then $\beta(G)$ equals the maximal length of a non-shortable equation in G.

Example 2.4. In \mathbb{Z}_3 the equation $1 + 1 + 1 = 0$ is non-shortable. However, any equation $b_1 + b_2 + b_3 + b_4 = 0$, where $b_i \in \{1, 2\}$ is shortable. This is why: At least one of the b_i’s, let’s call it b_r, must equal 1. Otherwise, the sum of the b_i’s will fail to be zero. Likewise, at least one of the b_i’s, let’s say b_s must equal 2. We then have $b_r + b_s = 0$, and the result follows. A similar argument can be used to check that the maximal length of a non-shortable equation in \mathbb{Z}_3 is actually 3. Hence, by Theorem 2.4 we must have $\beta(\mathbb{Z}_3) = 3$. This result was predictable since \mathbb{Z}_3 is cyclic.

In $\mathbb{Z}_3 \times \mathbb{Z}_3$, the equation $(0, 1) + (0, 1) + (1, 0) + (1, 0) + (1, 1) = (0, 0)$ is non-shortable. In fact, we have $\beta(\mathbb{Z}_3 \times \mathbb{Z}_3) = 5$. This is consistent with Theorem 2.1.

We want to conclude this paragraph with some of the classical results known. The proof of some of those can be found in [11].
Proposition 2.5. We have the following:

1. If G is the dihedral group D_n of order $2n$ then $\beta(D_n) = n + 1$.

2. If $G = \mathbb{Z}_{p_1^r_1} \times \ldots \times \mathbb{Z}_{p_s^r_s}$, where p is a prime number then we have $\beta(G) = 1 + \sum_{i=1}^{s} (p_i^r - 1)$.

3. $\beta(S_2) = 2$, $\beta(A_3) = 3$, $\beta(S_3) = 4$, $\beta(A_4) = 6$, and $\beta(S_4) = 10$.

3 Subspace Arrangements Explored

In [6] we introduced the geometric argument of subspace arrangements as a possible way to address the degree bound problem. More specifically, we focused on the variety $B := \bigcup_{g \in G} g\Delta(V)$ where V is a finite dimensional K-vector space, and $\Delta : V \rightarrow V \times V$ is the diagonal morphism. Moreover, the action of the group G on $V \times V$ is defined by $g(v, v) = (v, gv)$.

The following two theorems were the motivation to start thinking about the degree bound problem from a geometric point of view, because together they translate the degree bound problem from the ring of invariants $K[V]^G$ to a degree bound problem on the ideal $I(B)$ of the variety B.

Theorem 3.1 (H. Derksen). Let I be the ideal of $K[V]$ generated by all homogeneous invariants of positive degree. We can further reasonably assume that $I = \langle h_1, \ldots, h_s \rangle$ where all the h_i, $1 \leq i \leq s$ are homogeneous, then $K[V]^G = K[\mathcal{R}(h_1), \ldots, \mathcal{R}(h_s)]$, where \mathcal{R} is the averaging Reynolds operator defined by:

$$\mathcal{R} : K[V] \rightarrow K[V]^G$$

$$h \mapsto \frac{1}{|G|} \sum_{g \in G} gh.$$

Theorem 3.2. Suppose the ideal $I(B) \subset K[V \oplus V]$ of the variety B is generated by the homogeneous polynomials $f_1(x, y), \ldots, f_r(x, y)$, then the ideal I in Derksen’s theorem is given by $I = \langle f_1(x, 0), \ldots, f_r(x, 0) \rangle$.

We presented in [6] a simple geometric intuition that lead us to define the following alpha number:

$$\alpha(\rho_{\text{reg}}) := \max \{ \#(\mathcal{L} \cap B_{\text{reg}}) \mid \mathcal{L} \text{ affine line in } V \oplus V \text{ such that } \mathcal{L} \not\subseteq B_{\text{reg}} \}$$
where ρ_{reg} is the regular representation of G, B_{reg} is the subspace arrangement associated with ρ_{reg}, and $\#(\mathcal{L} \cap B_{\text{reg}})$ stands for the number of point of intersection between \mathcal{L} and B_{reg}. We had the following proposition that we hoped would give us a lower bound for $\beta(G)$:

Proposition 3.3. $\beta(\rho_{\text{reg}}) \geq \alpha(\rho_{\text{reg}})$.

One of our goals this year was to examine how good of a lower bound $\alpha(\rho_{\text{reg}})$ could be. So, we decided to investigate this question through explicit examples whose $\beta(\rho_{\text{reg}})$ are known.

For instance, it turns out that the argument works well for $\mathbb{Z}_2 \times \mathbb{Z}_2$ as the computation carried in [6] shows. In this case we got a lower bound of 3 which is very good considering that $\beta(\mathbb{Z}_2 \times \mathbb{Z}_2) = 3$. However, the argument doesn’t work that well for $\mathbb{Z}_3 \times \mathbb{Z}_3$ where we failed to even get a lower bound of 4 considering that $\beta(\mathbb{Z}_3 \times \mathbb{Z}_3) = 5$.

It is important to mention that the computation involved to calculate the lower bound given by the alpha number can quickly become intractable as the group order increases. For example, in the $\mathbb{Z}_3 \times \mathbb{Z}_3$ case we worked with the following representation which is equivalent to its regular representation and is afforded by the matrices:

$$\rho(\sigma) = [e_1 e_2 e_3 \zeta e_4 \zeta e_5 \zeta^2 e_7 \zeta^2 e_8 \zeta^2 e_9] \in GL(9, \mathbb{C})$$

and

$$\rho(\tau) = [e_1 \zeta e_2 \zeta^2 e_3 e_4 \zeta e_5 \zeta^2 e_6 e_7 \zeta e_8 \zeta^2 e_9] \in GL(9, \mathbb{C})$$

where e_k represents the k-th standard vector of \mathbb{C}^9 for $1 \leq k \leq 9$, σ and τ are the group generators, and ζ represents the primitive 3rd root of unity. That is ζ satisfies the equation: $\zeta^2 + \zeta + 1 = 0$.

Aiming for a lower bound of 4 simply means intersecting the affine line in \mathbb{C}^{18} given by $\mathcal{L}(t) = (a_1 + tb_1, ..., a_{18} + tb_{18})$ with 4 distinct subspaces in the variety B. This amounts to solving $\binom{9}{4} = 126$ systems of $9 \cdot 4 = 36$ non-linear equations in $18 + 18 + 4 + 1 = 41$ unknowns. The equations can be made linear by fixing a value for ζ. In that case the number of unknowns decreases by 1. In either case, we were not successful in finding non-trivial solutions!

4 The Symmetric Group S_n

After wrestling for some time with the computation outlined at the end of the preceding paragraph, we decided to try something different. So, we
shifted our attention to the symmetric group in \(n \) symbols \(S_n \). Before we can state the main result, let us recall some background in representation theory.

1. If \(V \) and \(W \) are two representations of a group \(G \), then we have
 \[
 \text{Hom}(V, W)^G \cong (V^* \otimes W)^G
 \]

2. If \(V \) is irreducible, and \(W = V_1^{d_1} \oplus \ldots \oplus V_r^{d_r} \), where \(V_i \) is irreducible for \(1 \leq i \leq r \), then a corollary of Schur’s lemma implies that \(\text{Hom}(V, W)^G \neq 0 \) if and only if \(V \cong V_i \), for some \(i \).

Combining the two points above, we deduce that:
\[
\mathbb{C}[V \oplus W]_{d,1}^G \neq \{0\} \quad \text{if and only if} \quad W \subset \mathbb{C}[V]_d
\]

where \(\mathbb{C}[V \oplus W]_{d,1} \) is the subspace of homogeneous polynomials of multidegree \((d, 1)\) in the bigraded ring \(\mathbb{C}[V \oplus W] \).

Lemma 4.1. Let \(V \) be the standard representation of the symmetric group \(S_n \), and let \(W \) be its sign representation. The following holds:
\[
W \subset \mathbb{C}[V]_d \implies d \geq \binom{n}{2}.
\]

Proof. Suppose \(0 \neq f \in W \subset \mathbb{C}[V]_d \), and let \(\sigma \) be the transposition \((i, j)\) with \(i < j \). Then we have \(\sigma f = f(X_1, \ldots, X_j, \ldots X_i, \ldots X_n) = -f(X_1, \ldots, X_i, \ldots X_j, \ldots X_n) \). This implies that \(X_i - X_j \) divides \(f \). Since the polynomial \(X_i - X_j \) is irreducible, and the pair \((i, j)\) was chosen arbitrarily, we can therefore conclude that \(\prod_{i < j}(X_i - X_j) \) divides \(f \). Hence, \(\deg(f) = d \geq \binom{n}{2} \).

Proposition 4.2. \(\beta(S_n) \geq 1 + \binom{n}{2} \).

Proof. Consider the polynomial \(f = \prod_{i < j}(X_i - X_j)Y \in \mathbb{C}[V \oplus W]_{\binom{n}{2}, 1}^{S_n} \), and suppose that there exists a polynomial \(P \) and invariants \(f_i \), \(1 \leq i \leq r \) such that \(f = P(f_1, \ldots f_r) \), where \(\text{multideg}(f_i) < 1 + \binom{n}{2} \) for all \(i \). We can write \(f = \sum_{i=1}^{r} g_i h_i \), where \(g_i \) and \(h_i \) are non-constant polynomials and \(\text{multideg}(g_i) + \text{multideg}(h_i) = \binom{n}{2} + 1 \). It is clear that one of the \(g_i \)'s or \(h_i \)'s must have multidegree \((e, 1)\) for some integer \(e < \binom{n}{2} \). Let’s call it \(g_s \). We then have: \(\text{multideg}(g_s) = (e, 1) \) and \(\text{multideg}(h_s) = (\binom{n}{2} - e, 0) \). However, since \(0 \neq g_s \in \mathbb{C}[V \oplus W]_{\binom{n}{2}, 1}^{S_n} \), Schur’s lemma implies that \(W \subset \mathbb{C}[V] \). Thus, we must have \(e \geq \binom{n}{2} \) by Lemma 4.1. Hence the contradiction. \(\square \)
We want to close this paper with a conjecture that we believe will provide a generalization of B.Schmid’s result presented in the second bullet of Proposition 2.5.

Conjecture 4.3. Let G and H be two finite groups, then we suspect the following to be true: $\beta(G \times H) = \beta(G) + \beta(H) - 1$.

Acknowledgements

I want to express my gratitude to my advisor professor Harm Derksen whose patience and willingness to explain difficult concepts have kept me motivated throughout this work. I also want to extend my thanks the department of Mathematics at the University of Michigan for allowing me to come back this year around to further the research started last year. Finally, I want to thank the NSF whose grant number: 1302032 has funded this research.

References

