The Department of Mathematics celebrated the Fred and Lois Gehring Special Year in Complex Analysis during the 2001-02 academic year. Supported through the Gehring Chair endowment, the Special Year provided an opportunity to invite several distinguished visitors to the department and host two conferences.

John Erik Fornæss, the Frederick W. Gehring Collegiate Professor of Mathematics, organized the special year and the conferences in the department. “This special year allowed us to really focus our research efforts and collaborate with some exciting visitors,” says Fornæss. “I hope that this provided a great opportunity for the department members, especially the younger faculty and graduate students in the field, for real scholarly interaction with some of the most innovative researchers in complex analysis.”

The two special conferences held this year contributed to the scholarly pursuits of department members and visitors. In October 2001 the complex analysis conference attracted more than 100 mathematicians. This three and a half day event consisted of over 35 research presentations by mathematicians from around the world, and included a banquet honoring Fred and Lois Gehring on Saturday night.

A second conference, held in March 2002, concentrated on complex dynamics. This smaller conference was filled with exciting research and interaction among the visiting mathematicians and UM faculty and students.

Three mathematicians held Gehring Visiting Professorships during the year: Pekka Koskela, from the University of Jyväskylä, Finland, was a Gehring Visiting Professor in the fall. Diederich is a frequent visitor to the department and is a leading researcher in several complex variables. Eric Bedford, from Indiana University, held a Gehring Visiting Professorship in the winter term. Bedford received his PhD from UM in 1974, under the direction of Al Taylor, and is known for his ground-breaking research in several complex variables and complex dynamics.
In many ways this has been a transitional year for the department. The first year after Al Taylor’s experience and dedicated leadership, we moved into a “bottom line” budgeting system that gives the department more control, and more responsibility, over expenditures. The events of 9/11 and the departure of much of the leadership of the previous year had added significant additional uncertainty this year. I had much to learn as a first-time interim chair, but thanks to the dedication and support of the associate chair, the executive and personnel committees, and Al’s frequent advice, the department navigated through these administrative changes fairly smoothly.

The department hosted what I believe must be a record number of conferences. We had two conferences associated with the special year in complex variables, organized by John Erik Fornæss and supported primarily by the returns from the Gehring endowment. The department also hosted a regional AMS meeting in March 2002, which attracted about 350 mathematicians, and the Great Lakes Geometry Conference organized locally by Dan Burns. Adding to this the usual amount of seminars and colloquia, the level of research activities in the department was extraordinary. Many of our faculty received significant awards and honors, some of which are highlighted in this issue of Continua.

There are significant ongoing changes in the leadership of the very important introductory program. Mort Brown stepped down as director of the program this year, a position now filled by Pat Shure, and Bob Megginson is on leave at the Mathematical Science Research Institute in Berkeley, Calif., where he will be deputy director for the next two years. It is imperative that the department continues to support this program by finding strong leaders. Recruiting efforts in this direction were not successful at the college level this year, which led to an intense dialogue between the department, the dean and the LSA executive committee. I think the result is very positive. We now have official recognition from the college of our need for a tenured leadership position for the introductory program, with specific criteria for tenure. I believe this is a solid basis on which the department can recruit outstanding faculty for this role.

Being chair has been an extraordinary, often exciting, experience, well described by Jefferson’s phrase splendid misery. As I step down after two years of administrative service, first as associate chair and then as interim chair, I find the department healthy and strong and I look forward to the quiet of academic work. I am also very grateful to all who worked so hard in service roles to make this transitional year go smoothly. It has been said that the strength of a department resides in its faculty, and I know this faculty will support Trevor Wooley to lead the department to new heights.

-Alejandro Uribe

Celebrating Martin Luther King Day

The annual Martin Luther King Day Colloquium was held in conjunction with the University’s Martin Luther King Day observance (see item on page 3). Pictures are courtesy of the colloquium coordinator Professor Karen Smith, speaker Dr. Raymond Johnson, Chair Alejandro Uribe and Professor Bob Megginson. Math Department photo.

Notes from Chair Alejandro Uribe

Alumni/ae Updates

John R. Carness (BS & MS ’48, PhD Philosophy ’57) retired from the faculty of the University of Colorado, Boulder, and now lives in the mountain community of Salida. Follow- ing receipt of the MS, he was employed in theoretical physics in Oak Ridge, Tennessee, before returning to Ann Arbor to study philosophy. He created and taught a course from math to philosophy to a single course in the foundations of mathematics taught by the legendary Raymond Wigner. Following completion of the PhD he was appointed to the philosophy faculty at Colorado where he served until retirement in 1995. During that time he served as associate dean for the College of Arts and Sciences for seven-teen years and held various other administrative positions. His mathematics background combined with his philosophical interests resulting in the production of a book entitled “Axiomatics and Dogmatics” (Oxford, 1982), an inquiry into the relations between formal science and dogmatic theology, as well as between factual science and apologetics. Other publications dealt with various aspects of contemporary moral and political philosophy.

BeauregardStubbefield (MS ’51, PhD ’59) received a lifetime achievement award from the National Association of Mathematics. In 2000 his long and varied career included faculty positions at the University of Liberia in Monrovia, Stevens Institute of Technology in New Jersey, Oakland University in Michigan, and Appalachian State University in North Carolina. He served as a research mathematician for the Drott Ar senal and was mathematician/EEO manager at the U.S. Department of Commerce. He rendered many hours of time to professional organizations, and also was among those who helped establish the National Association of Mathematicians as an international organization.

Simon Bennying (BS ’69) received an MS in mathematical economics at Hebrew University in Jerusalem (1972) and a PhD in economics and finance at Tel-Aviv University (1977). He is a professor of finance (and department chair) at Tel-Aviv University. Since the early 80s Simon has spent 6-7 weeks per year as a “permanent visiting faculty” at the University of Pennsylvania. In the last 10 years he has published 3 books: “Numerical Techniques in Finance” (MIT Press, 1989), “Corporate Finance: A Valuation Approach” (1997, co-authored with Oded Sarig), and “Financial Modeling” (MIT Press, 1st edition 1997, 2nd edition 2000).

Alan Wald (BS ’70, MA ’73) is a national fellow of the American Chemical Society. He is also included in the 2002 edition of Who’s Who in the World.

Howard Shaw (MS ’71, PhD ’75) recently retired from his position as professor of math and computer science at the Western State College of Colorado. He plans to spend the rest of his life hiking in southern Utah.

Memorial Fund Honors Alumna

Lois’ husband Chip considered various options when establishing the memorial fund at UM. “Lois has such a great love for Michigan, and I wanted to chose an appropriate venue for the memorial tribute. First I looked at the athletic department because Lois was such a big fan, but the need wasn’t there. We’ve participated in the Martha Cook building fund, but that did not seem personal enough. I think that this award was the perfect way to continue Lois’ support for mathematics education.”

“I think the main point of the memorial fund is to simultaneously honor her love of UM and her love of teaching (and teaching mathematics in particu lar),” says her son Adam. “It also occurred to me that you do not teach math to do not typically benefit from much financial support, even though their contributions are so important. There is a small way to recognize their contributions as well as my mom’s.”

So far 50 of Lois’ friends, family members, and associates have contributed to the fund. When fully endowed, the fund should provide an annual award of about $1500. This award will aid in the department to reward promising mathematics students for their demonstrated talent and dedication. By giving the award to students who plan to pursue a career in mathematics education, it emphasizes the importance of developing knowledgeable and capable teachers of mathematics.

Scott Price (MS ’83) has worked in real estate for the past five years. He uses his analytical background to advise buyers and sellers on the market.

Marc Altschull (BS ’94) is an actuarial consultant with Tillinghast-Towers Perrin in Atlanta.

Greg Martin (BS ’94, PhD ’97) is an assistant professor in the Mathematics Department at the University of British Columbia in Canada.

Trevor Wooley has been a tenure-track faculty member at Idaho State University in Pocatello.

Lois’ husband Chip considered various options when establishing the memorial fund at UM. “Lois has such a great love for Michigan, and I wanted to chose an appropriate venue for the memorial tribute. First I looked at the athletic department because Lois was such a big fan, but the need wasn’t there. We’ve participated in the Martha Cook building fund, but that did not seem personal enough. I think that this award was the perfect way to continue Lois’ support for mathematics education.”

“I think the main point of the memorial fund is to simultaneously honor her love of UM and her love of teaching (and teaching mathematics in particular),” says her son Adam. “It also occurred to me that you do not teach math to do not typically benefit from much financial support, even though their contributions are so important. There is a small way to recognize their contributions as well as my mom’s.”

So far 50 of Lois’ friends, family members, and associates have contributed to the fund. When fully endowed, the fund should provide an annual award of about $1500. This award will aid in the department to reward promising mathematics students for their demonstrated talent and dedication. By giving the award to students who plan to pursue a career in mathematics education, it emphasizes the importance of developing knowledgeable and capable teachers of mathematics.
Undergraduate Degree Recipients:

December 2001, April 2002, August 2002

Rachael Adamczyk
Eric Klein
Khalid Ahmed
Ven Kong
Megan Alpert
Louis Krane
Aparna Arunakumar
Robert Kugler
Ilana Dain
Katherine Lai
Stacey Barbosa
Paul Lee
Elvira Baron
Stacy Lee
Jonathan Barron
Gary Levenbach
Noel Bekrou
Amina Malik
Joseph Bernard
Michael Mialleenee
Vikram Bharadwaj
Lindsey Miller
Mera Bhat
Siwatu Moore
Kathryn Boggs
Jessica Nowak
Ashley Carter
Adegoke Owojole
Weiling Chen
Catherine Ong
Hong Chong
Margaret Peters
Brian Clark
Sruthi Pinnamanee
Brandon Coates
Wesley Rich
Claudia Colton
John Rimers
James Corliss
Eric Ross
Kunjil Dharia
Jonathan Salet
Geoffrey Dietrich
Nicolas Salvagione
Nedalko Dimitrov
Michael Shapiro
Robert Easton
Benjamin Singer
Matthew England
Jodi Siskind
Sarah Ferrone
Sara Srinivasan
Ryan Foley
David Skalinder
William Foster III
Nicholas Smith
Patrick Franek
Ryan Smith
Christopher Gardner
Stephen Steffes
William Gifford
Katsuhiko Sueda
Laura Gilrinf
Geoffrey Svacha
Gregory Giusto
Geoffrey Svacha
Bertrand Guillou
Geoffrey Svacha
Heidi Himrichs
Julie Tytkowska
Stefanie Hobbis
Jamie Vengaro
Lisa Hom
Melissa Wahl
Rachael Hopkins
Troy Wallace
David Howland
Tyrese West
Andrew Hsu
Stephen Wong
Andrew Johnson
Tina Washington
Stephen Kazmierski
Derek Young
David Klein
John Zhu

During the 2001-02 academic year, seemly every month there was a different speacial event or lecture series held in the department. While the Special Year ac-
counted for some of the excitement (see page 1), other events drew many visitors here. A chronological listing of the major events and conferences this year follows.

Ziwt Lectures

In October, Professor Timothy Gowers from Cambridge University and Princeton presented the Ziwt Lectures. His talks, en-
titled “Seemert’s Theorem and Related Re-
sults” examined the theorem that states that every set of integrals of positive den-
sity contains arbitrarily large arithmetic pro-
gressions. Gowers presented his new, more quantitative approach to the solution of this theorem. The Ziwt lectures were estab-
lished through a bequest by Alexander, Ziwt, a professor in the UM Department of Mathematics from 1888-1925.

Mathematics Career Day

In November, mathematics undergradu-
ates had the opportunity to meet with al-
nums representing a variety of career op-
tions. Ten alumni/ae working in our dif-
ferent career paths in which to utilize their mathematics degrees.

Inaugural Collegiate Chair Lecture

Professor Philip Hanlon presented the inaugural lecture of the Donald J. Lewis Col-
lege Professorship at Michigan. The professorship is named for Professor Emeri-
tus Donald J. Lewis, who served on the mathematics faculty for over 40 years. His research lies in an area known as number theory con-
cerned with Diophantine problems and encompasses the theory of algebraic num-
ber fields and function fields, and arithmetic geometry. During Lewis’ ten years as chair, the department developed a national reputa-
tion as a leader in innovative undergraduate education, the department’s research rankings rose into the top ten, and an inter-
derciplinary initiative was introduced.

Hanlon’s lecture to inaugurate his colle-
giate chair was entitled “New Frontiers in Applied Mathematics.” The lecture dis-
cussed “discrete math,” a kind of math-
ematical problem that arises particularly in applications to the information sciences. As a specific application, he demonstrated the mathematical structure of riffle shuffling, the process most commonly used to shuffle a deck of playing cards. Hanlon discussed how riffle shuffling can be modelled as a Markov (random) process. A fundamental result is that within this model, the probabil-
ity of achieving a given ordering of the cards after k riffle shuffles depends only on the number of rising sequences in that or-
dering, i.e., the number of times you have to loop back to the start of the deck when you trace the cards from smallest to largest. Us-
ing this fact, it is possible to determine how many riffle shuffles are needed so that there is nearly equal probability of being at any ordering of the cards.

2001 Rainich Lectures

Professor Martin Nowak, the head of the Theoretical Biology Program at the Insti-
tute for Advanced Studies at Princeton, delivered the G. Y. Rainich Lectures. Nowak is a mathematical biologist. His three lec-
tures on distinct topics were entitled:
• Computational and Evolutional Aspects of Language
• Chronomosal Instability of Human Cancers
• A (personal and incomplete) Perspective and Some Stories of Viruses

The Rainich Lectures were established through a gift from Professor Emeritus Raymond Wilder and his wife Una, to honor Yuri Rainich, UM mathematics faculty mem-
ber from 1926-1956.

Marjorie Lee Browne Colloquium

This colloquium is the department’s ob-
servation of Martin Luther King Jr. Day. The speaker this year was Professor Raymond L. Johnson from the University of Maryland. Johnson’s research is in the area of har-
monic analysis and weighted inequalities. He served as chair of the Maryland Math-
ematics Department from 1991-1996.

Johnson’s talk “The Maryland Experience: a community of African American graduate students” described the process that led to the recruitment and graduation of a significant number of African American mathematics doctorates from the University of Maryland. Johnson related his role in es-
tablishing a network of students across dis-
ciplines, and the challenges he faced from internal and external influences.

2002 Rainich Lectures

Another set of Rainich Lectures took place in February, 2002. Professor Robert MacPherson from the Institute for Adv-
anced Study in Princeton presented a se-
ries of three lectures entitled “Combinatorial Description of Topological Spaces.” The talks concerned a few modern aspects of an old idea: to present a topological space through combinatorial data. The two recent developments in the area that he high-
lighted were “combinatorial differential manifolds” and “moment graphs.”

AMS Sectional Meeting

The department was honored to have been chosen to host one of the sectional meetings of the American Mathematical So-
ciety. This event drew over 350 participants to Ann Arbor. The three day event con-
sisted of hundreds of presentations on a wide variety of mathematical topics. In con-
junction with the meeting, special sessions were organized and presented. A special conference on “Curves and Their Moduli,” organized by UM faculty, was presented prior to and during the AMS meeting.

When asked why she chose math as a major, Stacey said, “The big factor was a math teacher I had in high school who was amazing. He was so smart and so enthusiastic about teaching, and he really taught me how to think at a whole new level. After that, I knew that I wanted to teach. I could be a math major and have a lot of different jobs, but I was sure that I could be as good of a teacher as he was, and I wanted to try. Throughout college I tutored in the math lab, and that just confirmed my decision.”

Kristen chose math as a major because “it has always been something I’ve enjoyed. I also like the fact that unlike English or other majors, it is not subjective. There is generally a right or wrong answer to a problem, although there is still the opportunity to be creative as to how one comes to an answer.”

Want to get involved with the UM Department of Mathematics? Here are some areas where alumni participation is vital. Let us know if you are interested in working with us on these initiatives.

- Recommend the UM mathematics program to students interested in undergraduate or graduate studies
- Participate in our annual Career Day
- Be a mentor (in person or via email) to a current student
- Set up a recruiting program with your company for graduating students
- Offer internships in your company to mathematics students
- Allow groups of mathematics students to visit your company

Email math.mich@umich.edu or call 734-764-0335

For sisters Kristen (l) and Stacey (r), Barbosa, math runs in the family. Stacey graduated this year, and received an Outstanding Achievement in Mathematics Award. In 2001 she received the Leon F. Zawiski Prize. She plans to teach high school mathematics. Her sister Kristen just finished her sophomore year and declared her math major. (Math Department photo)
Bonk attended the Technical University of Braunschweig where he received his Master’s in mathematics and theoretical physics in 1986, Doctorate in mathematics in 1988, and Habilitation in 1992. He began his teaching career as a lecturer at the Technical University of Braunschweig from 1989 to 1996. He held a postdoctoral appointment at UM from 1993 to 1995, and was supported by a Feodor Lynen Fellowship from the von Humboldt Foundation. In 1997 he received the Heisenberg Fellowship, a very prestigious five-year award from the German Science Foundation. Bonk is an innovative analyst of notable breadth and depth working in a variety of areas including classical complex analysis, quasiregular mappings, and “Gromov-style” geometric analysis on metric spaces. He has made his mark on a number of long-standing problems in geometric function theory, including solving a 70-year-old problem in classical complex analysis. He is also actively studying the interplay of analysis and geometry on metric spaces.

Mario Bonk, Professor

Bonk’s current research interests are in the areas of dynamical systems, financial mathematics, complex analysis, and ergodic theory. His research in higher-dimensional complex dynamics involves the ergodic properties of iterates of holomorphic maps of complex manifolds, in particular complex projective space \mathbb{P}^2. Bonk has worked on joint projects in this area with colleagues at Notre Dame, Penn State, and in Paris. In the area of financial mathematics, he is studying optimal trading in mathematics by a North American undergraduate.

In 1998, Soundararajan received his PhD from Princeton University. Since then he has held a five year fellowship from the American Institute of Mathematics. His research in higher-dimensional complex dynamics involves the ergodic properties of iterates of holomorphic maps of complex manifolds, in particular complex projective space \mathbb{P}^2. Bonk has worked on joint projects in this area with colleagues at Notre Dame, Penn State, and in Paris. In the area of financial mathematics, he is studying optimal trading in mathematics by a North American undergraduate.

Kristen Moore, Assistant Professor

After receiving her BS in mathematics from Bucknell University, Moore became a practicing actuary, and achieved associate status in the Society of Actuaries. Her 1999 PhD thesis from the University of Connecticut, and some subsequent research, studies boundary value problems for nonlinear wave equations and nonlinearly coupled beam and wave equations that govern the torsional and vertical motion of a suspension bridge, in particular, the famous Tacoma Narrows bridge.

Moore joined the UM faculty in 1999 as a three-year assistant professor. She now has a tenure track appointment in the Department’s Program in Actuarial and Financial Mathematics.

In 2001 Moore was awarded an American Fellowship from the American Association of University Women. The award recognizes only 18 fellows within all of the arts, humanities, social sciences, and natural sciences. Moore spent the 2001-02 academic year at the University of Wisconsin.

Kannan Soundararajan, Associate Professor

Soundararajan received his BS in mathematics from UM in 1995. From his first days here, it was evident that he was a remarkable talent. He was publishing serious mathematics papers during his undergraduate career. He received numerous awards while attending UM, including the very first Morgan prize, given jointly by the American Mathematical Society, the Mathematics Association of America, and the Society for Industrial and Applied Mathematics, recognizing the best research in mathematics by a North American undergraduate.

Undergraduate Award Recipients

The department’s team for the William Lowell Putnam Mathematics Competition placed 98th out of more than 453 teams participating in the event. This year’s team was comprised of Vivek Shende, Matthew England and Chris Battey. The individual competition included 2954 students from across North America. Vivek Shende placed in the top 100 individually, and UM students Bertrand Guillou, Thomas Dunlap, Robert Easton and Anna Malteva all placed in the top 50.

Winner of the 18th Annual University of Michigan Undergraduate Mathematics Competition was Christopher Battey. Tied for second place were Thomas Dunlap and Vivek Shende.

The William LeVeque Award in Number Theory was presented to Jeffrey Allotta. The award recognizes a student who is at most a junior and excels in the study of number theory.

The following students received Evelyn O. Bychinsky Awards, designed to recognize undergraduates who show exceptional promise in mathematics:

Stacey Bittner
Walter Dunlay
Jesse Kaess
Justin Malestein
Anna Malteva

The award for Outstanding Graduating Senior went to Robert Easton.

Ryan Foley received the Leon P. Zaworski Prize for outstanding service in the Math Lab.

Outstanding Achievement in Mathematics Awards went to the following seniors:

Stacey Barbosa
Dakotah Keesling
Brieon Little

Finally, planning has started for the annual meeting of a newly reconstituted Alumni/ae Leadership Council including a periodic review of the program. The review is intended to ensure the evolving syllabus changes from the professional societies as well as the changing needs of the business community.

After receiving her BS in mathematics from the University of Gothenburg, and his PhD from the Royal Institute of Technology in 1992, and received his PhD in computer science from Cornell University in 1998. He held postdoctoral positions at the Mathematical Sciences Research Institute and the University of Chicago.

Viswanath is a strong mathematician and an impressive scholar working in the area of numerical analysis. While foremost an analyst, he has very broad interests which include dynamical systems, theory of random matrices, probability, and numerical analysis of differential equations.

Viswanath received his BS in computer science from the Indian Institute of Technology in 1992, and received his PhD in computer science from Cornell University in 1998. He held postdoctoral positions at the Mathematical Sciences Research Institute and the University of Chicago.

Viswanath is a strong mathematician and an impressive scholar working in the area of numerical analysis. While foremost an analyst, he has very broad interests which include dynamical systems, theory of random matrices, probability, and numerical analysis of differential equations.

and the University of Chicago.

Viswanath is a strong mathematician and an impressive scholar working in the area of numerical analysis. While foremost an analyst, he has very broad interests which include dynamical systems, theory of random matrices, probability, and numerical analysis of differential equations.

The Irving S. Wolfson Award in Actuarial Science was presented to Vivek Natarajan.

Gary Levenbach received the Otto Richter Memorial Prize in Actuarial Science.

The CIGNA Award in Actuarial Science was presented to Ryan Smith and Thomas Walker.

During the summer of 2002, the department funded 21 students participating the Research Experience for Undergraduates program.

It proved to be an especially active year for the Michigan Actuarial Program. Cecil Noshir’s passing, noted elsewhere, was a cause for deep reflection, particularly for those of us who had been involved with him and the program in the past. His wise counsel and advice will be sorely missed.

The student-run program involved a number of activities—educational, social and athletic. While we are not particularly gifted in the area of athletics, we participate with the same great enthusiasm we do in other areas, and it provides an excellent opportunity for the students to work together.

For the fall, 2002 there will be a meeting of a newly reconstituted Alumni Leadership Council including a periodic review of the program. The review is intended to reflect the evolving syllabus changes from the professional societies as well as the changing needs of the business community.

Finally, planning has started for the annual meeting of a newly reconstituted Alumni/ae Leadership Council including a periodic review of the program. The review is intended to ensure the evolving syllabus changes from the professional societies as well as the changing needs of the business community.

For the fall, 2002 there will be a meeting of a newly reconstituted Alumni Leadership Council including a periodic review of the program. The review is intended to reflect the evolving syllabus changes from the professional societies as well as the changing needs of the business community.

Finally, planning has started for the annual Actuarial Research Conference (ARC) to be held in Ann Arbor in August 2003. UM asked to host the conference in 2003 in honor of the centenary of the UM Actuarial Program, the first established in the United States in 1903. The ARC will start a number of special celebrations planned for our 100th year of service. These activities will involve both current students as well as alumni/ae and we look forward to seeing many graduate return on campus for some of these events.

- Professor Curtis Huntington
Under the direction of Associate Professor Brian Conrad, the Undergraduate Math Club gained membership and held regular seminars this year. The club meets every Thursday afternoon, in the Nesbitt Undergraduate Common Room. As an extra incentive, pizza and drinks are provided for all students who attend. The audience is a mix of students at all levels from Honors Calculus I up through senior math majors. Average attendance at this year’s talks was 15-20. The meetings of the math club contribute to the overall “vertical integration” (rev. VIGRE) that the department has been seeking for the past few years.

At each meeting, a member of the faculty or a graduate student presents a 30-35 minute talk on an interesting mathematical problem, application, or idea (or all three!). The selected topic is something that isn’t usually covered in the standard curriculum.

Some of these topics lead into important concepts in theoretical or applied research, while others are available to a broader audience and explain a fairly standard concept in a novel way. Everything is formulated so as to avoid needing technical background beyond college-level calculus, some exposure to methods of proof, and a moderate capacity for abstract thought.

Sometimes the weekly talk is replaced by a panel presentation on some topic of general interest, such as advice on graduate school or an overview of summer programs. There are occasional presentations by undergraduates of some of their own research, if it is of suitably general interest. The main goal is to experience the beauty of mathematical ideas, in whatever form they arise, and to have some free pizza at the same time.

“The most important aspect of the math club is that it enables undergraduates interested in math to meet others with similar interests and to find out where all “goes” says Conrad. “It seems to have also led to an increase in the number of students majoring in math. Although we can’t get funding from the University to subsidize the weekly food costs, we’re fortunate that the department has some funds which can be used for this purpose. The expense seems well worth it in the long run.”

Brian Conrad received the highest award bestowed by the University of Virginia to young scientists: the Presidential Early Career Award for Scientists and Engineers. Each year the NSF selects nominees for PECASE from among the most meritorious new CAREER award winners. The PECASE program recognizes outstanding scientists and engineers who, early in their careers, show exceptional potential for leading the development of future science. Charlie Doering was elected a Fellow of the American Physical Society in recognition of his fundamental contributions to the analysis of noisy and nonlinear dynamical systems. Election to fellowship in the APS is limited to no more than one half of one percent of its membership.

Curtis Huntington was awarded the Society of Actuaries’ 2001 John E. O’Connor Jr. Distinguished Service Award. The award recognizes “his important contributions to the advancement of the actuarial profession throughout the length of his career, devotion to others in employing unique and important professional skills in the public interest, and selfless commitment to the energy and effort to these causes and goals, which reflect the highest humanitarian standards and beliefs of the actuarial profession.”

Gregory Smith received the Alfred P. Sloan Research Fellowship. This is an extraordinarily competitive award with fellows selected from the very best in the fields of science and engineering. The fellowship is designed to allow the nation’s most promising young professors the support to pursue their science and engineering research with few funding limitations. The further intent of the foundation is to emphasize support for innovative individual research that involves the development and dissemination of new knowledge.

Nelson received the “A theoretical study of HIV-1 pathogenesis: from primary infection, through latency, to effective drug therapy: a program to aid AIM.” Focuses on the development and analysis of mathematical models that are fitted to patient data to understand the infection process.

Pat Shure has been appointed as a senior lecturer by the College of Literature, Science and the Arts, in recognition of her superlative teaching and contributions to the curriculum development. This is the highest honor the college confers on a lecturer.

Chris Skinner has been awarded a Packard Fellowship for Science and Engineering from the David and Lucille Packard Foundation. This very prestigious and highly competitive award is given to 24 scientists each year, nominated by 50 selected universities. The fellowship is designed to allow the nation’s most promising young professors the support to pursue their science and engineering research with few funding limitations. The further intent of the foundation is to emphasize support for innovative individual research that involves the development and dissemination of new knowledge.

Karen Smith will spend the 2002-03 academic year at the Mathematical Sciences Research Institute in Berkeley, CA from July 1, 2002 to June 30, 2003. She was also selected for inclusion in the book “100 Native Americans Who Shaped American History” by Bonnie Juettner.

Peter Miller has been selected as an Alfred P. Sloan Research Fellow. This is an extraordinarily competitive award with fellows selected from the very best scientists of their generation. Miller will continue his work in the area of asymptotic and perturbative methods for integrable nonlinear equations and applications to problems of nonlinear propagation.

Patrick Nelson was awarded a “Career Award at the Scientific Interface” from the Burroughs Wellcome Fund. The awards are intended to foster the early career development of researchers with backgrounds in the physical/computational sciences whose work addresses biological questions.
Lecture Notes

Robert Krasny joined the UM Depart-ment of Mathematics in 1987 as an assistant professor and was promoted to professor in 1996. He received his undergraduate degree from the State University of New York at StonyBrook and his PhD in applied math-ematics from the University of California at Berkeley in 1983. Before joining UM, he held an NSF postdoctoral fellowship at the Courant Institute at New York University.

Krasny is an applied mathematician working in the field of scientific computing. His goal is to develop accurate and efficient algorithms for computer simulation of physical processes, especially in fluid dy-namics and recently also in molecular dy-namics.

During his years at UM Krasny has re-ceived significant recognition for his work. He was a speaker at the 1990 International Congress of Mathematicians in Kyoto, Ja-pan. He received a Faculty Recognition Award (1991) and an Excellence in Educa-tion Award (1996). In recognition of his con-tributions to undergraduate education, Krasny was named an Arthur F. Thurnau Professor in 2000.

Recent PhD Recipients

Morgen Bills completed his disserta-tion “On Homomorphisms of Brauer Alge-bras in the Non-Semisimple Case” under the direction of Phil Hanlon. He has a position with the National Secu-rity Agency.

Manuel Bllekke completed his disser-tation “The Intersection Homology D-Module in Finite Characteristic” under the direction of Karen Smith. He will be a postdoctoral research fellow at the Math-ematical Sciences Research Institute in Berkeley for the 2002-2003 academic year, and after that will be a research fellow at the University of Essen, Germany.

Tszho Chan completed his dissertation “Pair Correlation and Distribution of Prime Numbers” under the direction of Hugh Montgomery.

Seung-II Choi completed his disserta-tion “Degenerate Principal Series for Ex-ceptional p-adic Groups” under the direction of Allen Moy.

William Correll, Jr completed his disser-tation “The Smith Normal Form and Kernel of the Varchenko Matrix” under the direction of Phil Hanlon. He is em-ployed by Harrods, a high tech company in Ann Arbor.

Daniel Haas completed his dissertation “A Geometric Study of the Toric Varieties Determined by the Root Systems B_n and C_n” under the direction of Michael Roth.

Zair Ibragimov completed his disserta-tion “The Apollonian Metric Sets of Con-stant Width and Mobius Modulus of Ring Domains” under the direction of Fred Gehring. Zair is the first student from the Republic of Uzbekistan to receive a PhD in the United States. He has a postdoc ap-pointment with the University of Texas.

Marius Irgens completed his disserta-tion “Properties of Square Integrable Holomorphic Functions” under the direc-tion of John Erik Fornæss. He will be apostdoc at the Norwegian University of Science and Technology in Trondheim.

Jeffrey Johnston completed his disserta-tion “The Distribution of Values in Combi-natorial Optimization Problems” under the direction of Juha Heinonen. He will be a CMCM postdoc in Numerical Analysis at the University of Jyväskylä in Finland.

William Kellie completed his disserta-tion “On the Castelnuovo-Mumford Regu-larity of Subspace Arrangements” under the direction of Robert Lazarsfeld. Next year he will be an NSF postdoctoral fellow at the University of California, Berkeley. In the fall of 2003 Jessica will start a tenure-track position at Mount Holyoke College.

Tamon Stephen completed his disserta-tion “The Distribution of Values in Com-binatorial Optimization Problems” under the direction of Alexander Barvinok. He will be a postdoc at the Institute for Math-ematics and its Applications at the Univer-sity of Minnesota.

Faculty Profile

Professor Robert Krasny

In 1994 the College of Engineering asked the Department of Mathematics to offer a new version of calculus for the engi-neering freshmen who demonstrated strong math ability by their performance on the Advanced Placement calculus exam. The mathematics chair at that time, Don Lewis, arranged for the students to enroll in spe-cial sections of Math 186 (Honors Calculus II) and he asked Krasny to supervise these sections. The aim was to provide a balance between theory and applications of cal-culus, and to cover material the students need for later courses in engineering, math, and science. The sections also attracted enroll-ment from LSA Honors students, and in 1996 a new course number was created for the project, Math 156 (Applied Honors Cal-culus II). The course typically enrolls 100-150 students in 4-6 sections.

It proved difficult to find an appropriate text for the course. “Calculus books become more inflated with each new edition—they try to include every conceivable topic,” Krasny reports. “I developed my own set of

Life Sciences Grant

In 2001, Krasny received a grant from the Michigan Economic Development Corporation’s Life Sciences Corridor Pro-gram. This program is utilizing funds the state received from a settlement with the to-bacco industry, and is channeling the money into life sciences research in Michi-gan. The University’s new Life Sciences In-stitute is an integral part of the state’s program.

The grant is entitled “Advanced Simul-aion of Biomolecular Structure and Dynam-ics.” The project involves collaboration with Professor Sam Karlin and his col-laborators in the UM Biophysics Research Division, as well as with a local software firm interested in commercializa-tion prospects.

With the recent success of the Human Genome Project, attention is now turning to the “protein-folding problem”—under-standing how a given protein’s amino acid sequence determines the protein’s three-dimensional structure. The folded structure determines the protein’s biological func-tion, and the relation between sequence, structure and function is the key to poten-tial applications in the pharmaceutical in-dustry. Ultimately it should be possible to design new and more effective drugs for a variety of human diseases.

Protein structure can be determined experi-mentally by X-ray crystallography, but the process is expensive and time-consum-ing. The goal of Krasny’s project is to de-velop an alternative method for predicting protein structure by computer simulation. There are two aspects to this: (1) developing a model for the forces acting between the atoms in the amino acid sequence, and (2) developing a numerical algorithm ca-pable of solving the equations of motion for the given forces. In this project Krasny is applying techniques and ideas from his prior work in computational fluid dynamics. The grant provides support for two other mathematics faculty members, Hans Johnston and Divakar Viswanath, and grant funds have been used to purchase a 16-node parallel computer for use by the group.

“I like this type of interdisciplinary work,” says Krasny. “It required an initial investment of time and energy, but receiv-ing the grant was a tangible return. The bio-physicists appreciate that mathematicians bring useful skills to the table.

Some of our recent PhD recipients (l-r): Jesse Otero, Kevin Rogovin, Eduard Kirr, Daniel Rogalski, Zair Ibragimov (Math Department photo)
Solution to Math Problem

The number $10^{10^{10}} - 1$ consists of 2002 9s. The sum of the digits of this number is equal to $9 \cdot 2002 = 18018$. If $10^{10^{10}}$ is a positive integer, then the sum of the digits of $10^{10^{10}} - k$ is $18018 - k$ when k is the sum of the digits of $k - 1$. Therefore the sum of the digits of $k(10^{10^{10}} - k) = (10\cdot 10^{10^{10}} - 1) - (k \cdot 10^{10^{10}} - 1) = (10^{10^{10}} - 1)(10^{10^{10}} - 1) - k$ is equal to $a \cdot 10^{18018} - b \cdot 18018$. The sum of the digits of $10^{10^{10}} - k$ is $18018 - k$ when k is the sum of the digits of $k - 1$. Therefore the sum of the digits of $k(10^{10^{10}} - k)$ is less than or equal to 36061 because this number consists of 4004 9s and 4004 = 36061. We have shown that 4 $10^{10^{10}} + 1$ is the smallest positive integer k such that the sum of the digits of $k(10^{10^{10}} - k)$ is not equal to 36061.
This year the department mourned the loss of one of its most esteemed faculty members, Cecil J. Nesbitt. Born in Fort William (now Thunder Bay), Ontario in 1912, he graduated from the University of Alberta in 1936, where he met his future wife, Ethel M. Winterburn. After graduating from Victoria High School in Thunder Bay, Nesbitt worked as an actuary for the company Nesbitt, Soper and Company. He then began his career in mathematics at the University of Michigan in 1937.

Nesbitt was appointed assistant professor in mathematics in 1934, and in 1937, he was awarded the Distinguished Faculty Governance Award from Senate Advisory Committee on University Affairs. He became a fellow of the Society of Actuaries in 1946, the same year he became a naturalized U.S. citizen. He was also a long-time member of the American Actuarial Society in 1965.

Beginning in 1951, Jones organized a program at the University of Michigan in 1958. He retired from the faculty in 1982.

Throughout his career, Nesbitt was first, foremost, a great teacher. He was the most effective teacher. He could explain abstractions so that they were crystal clear. It was also obvious how important his students were to him,” said Curtis E. Hunt, one of his students in the 1960s and now a professor of mathematics and the director of the Actuarial Program at UM.

After retiring from active teaching, Nesbitt continued exploring, mostly with undergraduate students, the mathematics of annuities and insurance. In the year roll-forward reserve financing of large public retirement systems such as the Old-Age Survivors and Disability Insurance (Social Security) program. His most recent published papers have touched on many debatable questions such as adaptive finan-cing and risk theory applications for annuities and insurance products. Nesbitt’s hope was “these papers will contribute in the new millennium to a revitalized program at Michigan, and to a new grasp of actuarial science as a basic foundation for annuity and insurance provision.”

In general, for Cecil, retirement did not lead to a slower pace of activity,” reports professor emeritus Alfred Kaplan. "In recent years I often saw him at his desk in the Math Department.

In 1991, the C. J. Nesbitt Room, a common room for house graduate concentrating in mathematics funded by alumni/ae, was dedicated. At that dedication ceremony, Nesbitt provided a concise history of actuarial science at UM. Starting in 1937 UM was the first U.S. university to offer such a program. For 63 of these 93 years, Professor Nesbitt was an integral part of the program. Today, the Nesbitt Room is an integral part of the fabric of life in the Department of Mathematics in its home in East Hall.

In 1992, on the occasion of his 80th birthday, a dinner was held in his honor in Washington, DC and organized a “surprise” birthday party for Nesbitt. At that party, the start of a campaign to fund the ‘Cecil J. Nesbitt Chair of Actuarial Mathematics’ in the Department of Mathematics was announced. With typical modesty, Nesbitt agreed to have his name associated with the chair, which was made possible once the chair was meant to recognize all of the faculty who had contributed to the past successes of the program. Memorial contributions may be made to this fund.

The department recently lost another of its great educators, Professor Phil Jones. Although he began his academic career in the Department of Mathematics, his research as a faculty member at the University of Michigan (bachelor’s (1933) and master’s (1935)) degrees in mathematics from UM. After a decade of teaching mathematics at the high school level, Nesbitt returned to UM and received a PhD in 1948.

Jones married his wife Helen in 1936 and they had four children—Anne, Philip Jr., Kristin, and Roger. In 1938 he became a faculty member at the Edison Institute of Technology in Dearborn, Mich., a creation of Henry Ford. Ford was a proponent of hands-on learning, and in his curriculum the institute included assembling a Model-T. Jones’ background in business provided a suitable hands-on learning activity for girls. He taught them to assemble a balance sheet in bookkeeping courses.

Jones’ areas of specialty were mathematics education and the history of mathematics. He joined the UM’s History of Mathematics, supervising the Math Museum, in 1947, and was named professor in 1958. He retired from the faculty in 1982.

Throughout his career, Jones worked closely with the UM School of Education to further the cause of mathematics education. He was a member of the board of governors of the Mathematical Association of America and a member of the U.S. Commission on Mathematics Instruction appointed by the National Academy of Science. He was a presenter at the International Congress of Mathematics Education in 1972, and a presenter at the 1975 International Congress of Mathematical Sciences in Pakistan. He received his honorary doctorate from Northern Michigan University in 1972.

One of Jones’ major publications was the 1959 NCTM Yearbook, “The Growth of Mathematics Ideas in the Primary Grades.” In his thesis of the book is that students should continually have recurring but varied contacts with the fundamental ideas and process of mathematics—number and operation, relations and functions; proof; measurement and approximation; probability; statistics; language and symbolism of mathematics; and mathematical modes of thought. The curriculum of course has been revised in elementary and middle school and now has emphasized secondary school curricula.

“Phil was willing to tackle new initiatives at improving mathematics education. He was respected and admired by his contemporaries and he leaves a legacy of colleagues and students who carry on his passion for teaching.”

- James M. Rubillo, Executive Director, NCTM

“His patience and thoughtfulness for others were among his strengths. His contributions to mathematics education have been very significant—particularly with his interest in the history of math and its rel-evance to the contemporary world.”

- James D. Gates, Executive Director, NCTM

While his vision failed later in life, Jones still loved being around his grandchildren. This Kurzweil reading machine to keep up with research in his field, and enjoyed reading all kinds of literature. Comments from colleagues and former students illustrate how Jones influenced many peoples’ careers and lives. He was an outstanding teacher who endeavored to help his students learn. He was effec-tively appreciated. He expected UM graduates to provide leadership and service to mathematics education in their role as teacher, mathematician, consultant, or college professor.

“It seems to me that each faculty member at Michigan is asked to assemble a three-legged stool, the legs being research, teaching and service. Most of us wobble around on one or sometimes two legs, but Phil’s stool had three sturdy legs. Henry Ford would have been pleased.”

- Eugene Krause, Professor of Mathematics, UM

“My father was extremely dedicated to the UM and the highest sense of a liberal arts education. He took great pride in his grandchildren’s accomplishments and was delighted to see the diversity of their aspirations and professions. The eight grandchil-dren include a physics teacher, a science writer, a medical doctor, an bilingual Latin American policy, a student of Chinese healing arts, an independent entrepreneur, and a student of mountains and geology.”

- Kristin Jones, Daughter

“Phil was an imaginative and creative mathematician and mathematics education classes for teachers. As an enthusiastic and stimulating teacher, it was clear how devoted he was to the sub-ject. He inspired many students understanding what they were learning. I consider it a great privilege to have worked with Phil as a colleague for 23 years and to have had him as a trusted friend for 45 years.”

- Joseph Payne, Professor Emeritus of Education, UM

Memorial contributions can be made to the Jones-Payne-Coxford Award Fund, UM School of Education, 610 East University, Room 1111C, Ann Arbor, MI 48109-1259. The award is given annually to a graduate student in mathematics education.
This year the department mourned the loss of one of its most esteemed faculty members, Cecil J. Nesbitt. Born in Fort William (now Thunder Bay), Ontario, in 1912. In 1922 he came to the University of Alberta to study mathematics. While a student, he met his future wife, Ethel M. Winterburn.

After graduating from Victoria High School in 1929, Nesbitt worked a year before proceeding to the University of Toronto. He graduated with degrees in mathematics in 1934, 1935, and 1937 (PhD). His PhD thesis was written under Professor Richard Brauer, an outstanding mathematician who was on the UM faculty from 1928-52.

Nesbitt was a fellow of the Society of Actuaries in 1946, the same year he became a naturalized U.S. citizen. He was also a long serving member of the American Mathematical Society in 1965. After completing a 4-year term as director of the Actuarial Education and Research Fund, he continued as the fund’s research director from 1980 to 1997. He was a vice president of the Society of Actuaries from 1986 to 1987.

He spent time in Puerto Rico and Costa Rica developing pension plans for public employees. In Ann Arbor, Nesbitt served on the city’s Retirement Pension Board for 18 years, during his time the pension fund grew from $15 million to more than $182 million. He also developed and implemented significant changes in how city workers received their benefits, and many local officials recognize that, because of Nesbitt’s diligent work, the pension plans are thriving.

For 43 active years, Cecil Nesbitt educated generations of actuarial students who went on to become leaders of industry and the actuarial profession. Several current CEOs of major insurance companies, as well as numerous retired chief executives, were among his students. Six of the most recent ten presidents of the Society of Actuaries have been UM actuarial graduates. This is no accident. Graduates of Michigan were guided by a strong faculty, led by Professor Nesbitt, into developing their intellectual capacity to their fullest. Even more importantly, he instilled a strong ethical foundation. From leadership positions, many graduates (following the example set by Nesbitt) made conscious decisions to devote their energies into the further development of the profession.

“There are people out there that say Nesbitt made the most difference in their lives” said Don Lewis, professor emeritus and former chairman of the math department. “Throughout his career, Nesbitt was first and foremost, a great teacher. He was the most effective teacher. He could explain abstruse concepts in ways that they were crystal clear. It was also obvious how important his students were to him,” said Curtis E. Hun- tingdon, one of his students in the 1960s and now an actuarial mathematician and the director of the Actuarial Program at UM.

After retiring from active teaching, Nesbitt continued exploring, mostly with undergraduate students, that meaningful year round reserve funding reserve of large public retirement systems such as the Old Age Survivors and Disability Insurance (Social Security) program. His most recent published papers have touched on many debatable questions such as adaptive financing and risk theory applications for annuities and insurance products. Nesbitt’s hope was “these papers will contribute in the new millennium to a revitalized program at Michigan, and to a new group of actuarial science— a basic foundation for annuity and insurance provisions.”

“In general, for Cecil, retirement did not lead to a less active pace of work,” reports professor emeritus Alfred Karr, who has known Nesbitt in recent years I often saw him at his desk in the Math Department.”

In 1991, the C. J. Nesbitt Room, a common room for undergraduate concentrators in mathematics funded by alumni/ae, was dedicated. At that dedication ceremony, Nesbitt provided a concise history of actuarial science at UM. Starting in 1951, UM was the first U.S. university to offer such a program. For 63 of these 99 years, Professor Nesbitt was an integral part of the program. Today, the Nesbitt Room is an integral part of the fabric of life in the Department of Mathematics in its home in East Hall.

In 1992, on the occasion of his 80th birthday, after 43 years as a graduate student at Washington, DC and organized a “surprise” birthday party for Nesbitt. At that party, a start of a campaign to fund the “Cecil J. Nesbitt Chair in Actuarial Mathematics” in the Department of Mathematics was announced. With typical modesty, Nesbitt agreed to have his name associated with the chair. In 1993, he made a donation to the chair was meant to recognize all of the faculty who had contributed to the past successes of the program. Memorial contributions may be made to this fund.

The department recently lost another of its great educators, Professor Philip Jones. Although he began his academic career in the Department of Mathematics at the University of Michigan’s bachelor’s (1933) and master’s (1935) degrees in mathematics from UM. After a decade of teaching mathematics at the high school level, Jones returned to UM and received a PhD in 1948.

Jones’s area of specialty were mathematics education and the history of mathematics. He joined the UM Mathematics faculty as an instructor in 1947, and was named professor in 1958. He retired from the faculty in 1982.

Throughout his career, Jones worked closely with the UM School of Education to facilitate courses in mathematics education. He was known nationally and internationally as an authority on the history of mathematics and mathematics education. Jones was a member of the board of governors of the Mathematical Association of America and member of the U.S. Commission on Mathematics Instruction appointed by the National Academy of Science. He was a presenter at the International Congress of Mathematics Education in 1972, and a presenter at the 1975 International Congress of Mathematical Sciences in Pakistan. He received honorary doctoral degrees from Northwestern University and Michigan State University in 1972.

One of Jones’ major publications was the 1959 NCTM Yearbook, “The Growth of Mathematical Ideas in Elementary School.” This most basic of the book is that students should continually have recurring but varied contacts with the fundamental ideas and process of mathematics—number and operation; relations and functions; proof; measurement and approximation; probability; statistics; language and symbolism of mathematics; and mathematical modes of thought. Any year of curriculum has been accepted broadly in elementary and middle schools and has influenced secondary school curricula.

“Phil was willing to tackle new initiatives at improving mathematics education. He was respected and admired by his contemporaries and he leaves a legacy of ideas and students who carry on his passion for teaching.” - James M. Rubilio, Executive Director, NCTM.

Memorial contributions can be made to the Jones-Payne-Coxford Award Fund, UM School of Education, 312 S. State Room 1111C, Ann Arbor, MI 48109-1259. The award is given annually to a graduate student in mathematics education.

James W. Rubilio, Executive Director, NCTM

“During my tenure as Executive Director, NCTM, I often saw him at his desk in the Math Department.”

“Beginning in 1951, Jones organized an annual Mathematics Education Conference held at UM. This conference was attended by mathematics teachers and school administrators from across the state and country. It was a time when we prided ourselves on abstract research. He excelled in an area that really didn’t fit into that mold. He loved to travel the country and speak to educators about mathematics and teaching.” - Eugene Krause, Professor of Mathematics Education, UM.

“My father was extremely dedicated to the UM and the highest sense of a liberal arts education. He took great pride in his grandchildren’s accomplishments and was delighted to see the diversity of their ambitions and professions. The eight grand chil-dren include a physics teacher, a science writer, a government consultant, a Latin American policy, a student of Chinese healing arts, an independent entrepreneur, and a student of mountains and geology.” - Kristin Jones, Daughter.

“Phil’s stool had three sturdy legs. Henry Ford would have been pleased.” - James D. Gates, Executive Director, NCTM.

“Phil was willing to tackle new initiatives at improving mathematics education. He was respected and admired by his contemporaries and he leaves a legacy of ideas and students who carry on his passion for teaching.” - James M. Rubilio, Executive Director, NCTM.

“My father was extremely dedicated to the UM and the highest sense of a liberal arts education. He took great pride in his grandchildren’s accomplishments and was delighted to see the diversity of their ambitions and professions. The eight grand chil-dren include a physics teacher, a science writer, a government consultant, a Latin American policy, a student of Chinese healing arts, an independent entrepreneur, and a student of mountains and geology.” - Kristin Jones, Daughter.

“Phil’s stool had three sturdy legs. Henry Ford would have been pleased.” - James D. Gates, Executive Director, NCTM.

“My father was extremely dedicated to the UM and the highest sense of a liberal arts education. He took great pride in his grandchildren’s accomplishments and was delighted to see the diversity of their ambitions and professions. The eight grand chil-dren include a physics teacher, a science writer, a government consultant, a Latin American policy, a student of Chinese healing arts, an independent entrepreneur, and a student of mountains and geology.” - Kristin Jones, Daughter.

“Phil’s stool had three sturdy legs. Henry Ford would have been pleased.” - James D. Gates, Executive Director, NCTM.

“My father was extremely dedicated to the UM and the highest sense of a liberal arts education. He took great pride in his grandchildren’s accomplishments and was delighted to see the diversity of their ambitions and professions. The eight grand chil-dren include a physics teacher, a science writer, a government consultant, a Latin American policy, a student of Chinese healing arts, an independent entrepreneur, and a student of mountains and geology.” - Kristin Jones, Daughter.

“Phil’s stool had three sturdy legs. Henry Ford would have been pleased.” - James D. Gates, Executive Director, NCTM.

“My father was extremely dedicated to the UM and the highest sense of a liberal arts education. He took great pride in his grandchildren’s accomplishments and was delighted to see the diversity of their ambitions and professions. The eight grand chil-dren include a physics teacher, a science writer, a government consultant, a Latin American policy, a student of Chinese healing arts, an independent entrepreneur, and a student of mountains and geology.” - Kristin Jones, Daughter.

“Phil’s stool had three sturdy legs. Henry Ford would have been pleased.” - James D. Gates, Executive Director, NCTM.

“My father was extremely dedicated to the UM and the highest sense of a liberal arts education. He took great pride in his grandchildren’s accomplishments and was delighted to see the diversity of their ambitions and professions. The eight grand chil-dren include a physics teacher, a science writer, a government consultant, a Latin American policy, a student of Chinese healing arts, an independent entrepreneur, and a student of mountains and geology.” - Kristin Jones, Daughter.
Three Faculty to Speak at International Congress

The International Congress of Mathematicians, sponsored by the International Mathematical Union, is held every four years. This large and prestigious conference takes place this August in Beijing, China. Three of our faculty members have been asked to speak at this year’s conference. Abstracts of their talks follow.

Juha Heinonen
The Branch Set of a Quasiregular Mapping

The issue of branching in quasiregular mapping will be discussed, and in particular the relation between branching and the problem of finding geometric parametrizations for topological manifolds. Other recent progress and open problems of a more function theoretic nature are also presented.

Toby Stafford
Noncommutative Projective Geometry

By analogy with the commutative situation, the category of graded modules modulo torsion over a noncommutative grading ring of quadratic, respectively, cubic growth should be thought of as the noncommutative analogue of the category of graded modules modulo torsion over a commutative ring, respectively, cubic curve, respectively surface. This category has many nontrivial insights and results in noncommutative algebra. Indeed, noncommutative curves and noncommutative graded rings of quadratic growth have been classified. Despite the fact that no classification of noncommutative surfaces in sight, a rich body of techniques has been developed and this has lead to some remarkable new examples. This survey will describe many of the recent developments in this area.

Solution to Math Problem

The number $10^{10^{10^{10}}} - 1$ consists of 2020's. The sum of the digits of this number is equal to $9 + 2002 = 2013$. If $10^{10^{10^{10}}} - 1$ is a positive integer, then the sum of the digits of $10^{10^{10^{10}}} - 1 - (k - 1)$ is $18018 - s$ where s is the sum of the digits of $k - 1$. Therefore the sum of the digits of $10^{10^{10^{10}}} - 1$ is equal to $10^{10^{10^{10}}} - 1$ is equal to $1 + 10 + 1 + 1 = 12$. The sum of the digits of $10^{10^{10^{10}}} - 1$ is equal to $10^{10^{10^{10}}} - 1 = 10^{10^{10^{10}}} - 1$ is equal to 3606. This number consists of 4004 9's and 4004 = 3606. We have that $4004 = 1 + 1$ is the smallest positive integer k such that the sum of the digits of $10^{10^{10^{10}}} - 1$ is equal to 3606.

Tom Storer Retires

“From where the sun now stands, I will teach no more forever.”

This quote adorns the office door of Professor Tom Storer after he taught his last class in mathematics.

Storer was a familiar and friendly face on campus for 35 years. He joined the UM in 1965 after receiving his PhD from the University of Southern California. He was one of the first Native Americans to receive a PhD in mathematics. His research area was primarily in combinatorics, specifically cyclic and difference sets. He made a standard reference. His wide range of interests included all types of games, string figures, coin collecting, Native American languages, and raising dogs.

Storer is best known and remembered as a superb teacher and counselor, as the balance of this piece will show. For over 30 years he counselled students in the Honors Program. In 1971 he retired the Ruth M. Sinclair Memorial Honor Student Award in recognition of his significant contributions to counseling honors students. In recognition of his outstanding skills, he received the Amoco Foundation Good Teaching Award in 1985. He worked closely with the UM and Ann Arbor Native American community. In 1994 he received the “Dreamkeeper” award from the Michigan Minority Affairs in recognition of his commitment and dedication in promoting equity and justice for all people of color.

I was impressed by three strengths of Professor Storer’s teaching. He is extraordinarily prepared and organized, he is enthusiastic about mathematics, and he has a genuine interest in his students. It is this personal interest, rather than being a college profes-

sional teacher. I took two independent study courses from Tom Storer. I do not know whether he received recognition, other than that. The only hours he spent with me. He is an inspiring and enlightening person to work with. I always feel that I am really in contact with a human being. Had he made a lasting impression on me. Indeed, my feelings toward the Uni-

versity faculty are somewhat shaped by my excellent experience with Professor Storer. I wrote the above in 1985 to the chair of the UM Department of Mathematics. It reflects well my feelings about Professor Storer. As years go by you begin to under-

stand the few true gems of wisdom in education and in mathematics specifically. One of them was told to our combinatorics class by Professor Storer. He said that learning mathematics is like looking at a house from different angles; every perspective offers new knowledge. What a simple and true ob-

ervation!”

- Martin J. Erickson (BS & MS ’85, PhD ’87), Professor of Mathematics, Truman College.

“Tom’s encouragement, knowledge, wisdom, and patience were essential to my completion of the doctoral degree. Besides fostering academic success, those many sessions with Tom (both in traditional settings such as the classroom, and in non-traditional settings such as his office) gave me a unique glimpse into the life and genius of this outstanding mathematician. Tom’s mentoring and teaching helped me to grow academically. I probably would not be the professional that I am today had it not been for the nurturing of Tom Storer.”

- Curtis Clark (PhD ’94), Associate Professor of Mathematics, Morehouse College.

“The opportunity to take classes with Tom Storer was among the best things for me about going to UM. Tom inspired me in both a love for theoretical mathematics and, no less important, a confidence in my abili-
ties to learn. I am still grateful for the astounding high level of mathematics that he was willing to teach to first-year undergraduate students like myself. I worked harder for Tom’s classes than for any others that I took at UM, but also derived immense satisfaction from them.”

- Kyla Ebels Duggan (BA ’98 Philosophy), Philosophy PhD student, Harvard University.

“My very first class at UM was Tom’s Honors Calculus in 1969. I remember won-
dering what was in store for me at college, what the professors would be like, what I would do, etc. Then Tom walked in wearing mirrored sun glasses, turquoise and silver rings, whiskers, a black widow spider pendant on a bear-tooth necklace, a dashiki, and jeans. I suspect that every student in that room was shocked, even though we were living through very unconventional times. That year Tom’s fascinating personal-

ity, wardrobe, stories, and jokes, all at-

tracted us to him as a teacher. But his teaching itself was unique. There was clarity and beauty to his lectures that I found irresistible. Unfortunately, I never experi-

enced it again (on a sustained basis). How-

ever, the feel of those lectures has always stayed with me and is something I strive to achieve in my own teaching.”

“My experience in Tom’s courses was probably the greatest influence in my decision to become a mathematician. Maybe I would have become one anyway. Who knows? But I know that I’m a better person now because of the experiences that I had. I think that my own students are better off because Tom was my teacher. Thank you Tom.”

- Steve Gornik (BS ’73, MS ’76, PhD ’79), Professor of Computer Science, University of Rochester.

“Professor Storer’s classes have an energy that is like running headlong downhill knowing you won’t stumble. We were shown the interconnectedness of math, science, and wonder. I particularly remember a frisbee once becoming an example of a physical principle that was explained by Professor Storer. He said that learning mathematics is like looking at a house from different angles; every perspective offers new knowledge. What a simple and true ob-

ervation!”

- Tom Storer took a personal interest in his students, you knew it was genuine even if you never had the pleasure of meeting by Professor Storer. He said that learning mathematics is like looking at a house from different angles; every perspective offers new knowledge. What a simple and true ob-

ervation!”

- Martin J. Erickson (BS & MS ’85, PhD ’87), Professor of Mathematics, Truman College.
New Three-Year Faculty

Brian Conrad received the highest award bestowed by the University of Virginia: the Presidential Early Career Award for Scientists and Engineers. Each year the NSF seeks nominees for PECASE from among the most meritorious new CAREER award winners. The PECASE program recognizes outstanding scientists and engineers who, early in their careers, show exceptional potential for leading the academic scientific community. This is the highest honor the college confers on a lecturer.

Chris Skinner has been awarded a Packard Fellowship for Science and Engineering from the David and Lucile Packard Foundation. This very prestigious and highly competitive award is given to 24 scientists each year, nominated by 50 selected universities. The fellowship is designed to allow the nation’s most promising young professors the support to pursue their science and engineering research with few funding constraints. The further intent of the foundation is to emphasize support for innovative individual research that involves the collaboration of postdocs and junior colleagues. Skinner will use the fellowship to continue and expand his work in the area of noncommutative geometry emerging from the links between Galois representations, modular forms, and abelian varieties.

Karen Smith will spend the 2002-03 academic year at the Mathematical Sciences Research Institute in Berkeley, Calif. from July 1, 2002 through June 30, 2003. She was also selected for inclusion in the book “100 Native Americans Who Shaped American History” by Bonnie Juettner.

Peter Miller has been selected as an Alfred P. Sloan Research Fellow. This can be extraordinarily competitive award with fellows selected from the very best scientists of their generation. Miller will continue his work in the area of asymptotic and perturbative methods for integrable nonlinear equations and applications to problems of nonlinear propagation.

Patrick Nelson was awarded the “A theoretical study of HIV-1 pathogenesis: from primary infection, through latency, to effective drug therapy: a project supported by AIDS.” focuses on the development and analysis of mathematical models that are fitted to patient data to understand the infection process.

Pat Shure has been appointed as a senior lecturer by the College of Literature, Science and the Arts, in recognition of her superlative teaching and contributions to the curriculum development. This is the highest honor the college confers on a lecturer.

While no list is comprehensive, below are a few examples of the 95 most influential women in Michigan. Smith was recognized as one of the 95 most influential women in Michigan.

A. V. Flint Award for Young Scientists: The President’s Early Career Award for Scientists and Engineers.

The University of Michigan Mathematics Department has been translated into Finnish and is in the process of being translated into Persian. In the March issue of Corp! Magazine, Smith was recognized as one of the 95 most influential women in Michigan.

Karen Smith has been awarded a Sloan Research Fellowship. This can be extraordinarily competitive award with fellows selected from the very best scientists of their generation. Miller will continue his work in the area of asymptotic and perturbative methods for integrable nonlinear equations and applications to problems of nonlinear propagation.

Patrick Nelson was awarded the “A theoretical study of HIV-1 pathogenesis: from primary infection, through latency, to effective drug therapy: a project supported by AIDS.” focuses on the development and analysis of mathematical models that are fitted to patient data to understand the infection process.

Pat Shure has been appointed as a senior lecturer by the College of Literature, Science and the Arts, in recognition of her superlative teaching and contributions to the curriculum development. This is the highest honor the college confers on a lecturer.
Bonk attended the Technical University of Braunschweig where he received his Master’s in mathematics and theoretical physics in 1986, Doctorate in mathematics in 1988, and Habilitation in 1992.

He began his teaching career as a lecturer at the Technical University of Braunschweig from 1989 to 1996. He held a postdoctoral appointment at UM from 1993 to 1995, and was supported by a Feodor Lynen Fellowship from the von Humboldt Foundation. In 1997 he received the Heisenberg Fellowship, a very prestigious five-year award from the German Science Foundation. Bonk is an innovative analyst of notable breadth and depth working in a variety of areas including classical complex analysis, quasirregular mappings, and “Gromov-style” geometric analysis on metric spaces. He has made his mark on a number of long-standing problems in geometric function theory, including solving a 70-year old problem in classical complex analysis. He is also actively studying the interplay of analysis and geometry on metric spaces.

New Faculty Appointments

Mario Bonk, Professor

Bonk received his PhD in mathematics from the University of Gothenburg, and his PhD from the Royal Institute of Technology in Sweden. He completed a three-year postdoctoral assignment at UM, and now has a tenure track appointment in the department’s Program in Actuarial and Financial Mathematics.

Bonk’s current research interests are in the areas of dynamical systems, financial mathematics, complex analysis and ergodic theory. His research in higher-dimensional complex dynamics involves the ergodic properties of iterates of holomorphic maps of complex manifolds, in particular complex projective space \mathbb{P}. Jonsson has worked on joint projects in this area with colleagues at Notre Dame, Penn State, and in Paris. In the area of financial mathematics, he is studying optimal trading strategies and the relationship between the market and the University of Chicago.

Jonsson is a strong mathematician and an active scholar working in the area of numerical analysis. While foremost an analyst, he has very broad cross-disciplinary interests including dynamical systems, theory of random matrices, probability, and numerical analysis of differential equations.

The department’s team for the William Lowell Putnam Mathematics Competition placed 8th out of more than 453 teams participating in the event. This year’s team was comprised of Vivek Shende, Matthew England and Chris Batter. The individual competition included 2984 students from across North America. Vivek Shende placed in the top 100 individually, and UM students Bertrand Guillou, Thomas Dunlap, Robert Easton and Anna Madteva all placed in the top 500.

Winner of the 18th Annual University of Michigan Undergraduate Mathematics Competition was Christopher Battey. Tied for second place were Thomas Dunlap and Vivek Shende.

The William LeVeque Award in Number Theory was presented to Jeffrey Alotta. The award recognizes a student who is at most a junior and excels in the study of number theory.

The following students received Evelyn O. Bychinsky Awards, designed to recognize undergraduates who show exceptional promise in mathematics:

- Stacey Bittner
- Walter Dunlay
- Jesse Kass
- Justin Malestein
- Anna Madteva

The award for Outstanding Graduating Senior went to Robert Easton.

Ryan Foley received the Leon P. and Anna Madteva Prize for outstanding service in the Math Lab.

Outstanding Achievement in Mathematics Awards went to the following seniors:

- Stacey Barbosa
- Kathryn Bogg
- Brian Clarke
- Matthew England
- Amy Kimball
- Michael Mallernee
- Sruhti Pinnamaneni
- Wesley Rich
- Eric Ryckman
- Geoffrey Svacha
- Tadashi Yamada

Margaret S. Huntington Prizes in Actuarial Science were awarded to the following first year students:

- Jason Beyer
- Bill Cahay
- Rebecca Farmer
- Christopher Jones
- Erika Palazo
- Laura Stajan
- Meghan Sticker
- Caleb Vip

The Irving S. Wallison Award in Actuarial Science was presented to Vivek Natarajan.

Gary Levenbach received the Otto Richter Memorial Prize in Actuarial Science.

The CIGNA Award in Actuarial Science was presented to Ryan Smith and Thomas Walker.

During the summer of 2002, the department funded 25 students participating in the Research Experience for Undergraduates program.
Undergraduate Degree Recipients:
December 2001, April 2002, August 2002

Rachael Adamczyk Eric Klein
Khalid Ahmed Ven Kong
Megan Alpert Louis Krane
Arpana Arunakumar Robert Kugler
Ilana Dain Kenneth Lai
Stacey Barbosa Paul Lee
Elivera Baron Stacy Lee
Jonathan Barron Gary Levenbach
Noel Bekrou Amini Malik
Joseph Bernard Michael Malleme
Vikram Bhaskaran Lindsay Miller
Meera Bhat Siwata Moore
Kathryn Boggs Jessica Nowak
Ashley Carter Adgeko Ojewole
Weiling Chen Catherine Ong
Hong Chong Margaret Peters
Brian Clark Sruthi Pinnamme
Brandi Coates Wesley Rich
Claudia Colton John Riemer
James Coorth Eri Ryon
Kunjul Dharia Jonathan Salet
Geoffrey Dietrich Nicolas Salvagione
Nedalko Dimitrov Michael Shapiro
Robert Easton Benjamin Singer
Matthew England Jodi Siskind
Sarah Enzence Sara Smith
Ryan Foley David Skander
William Foster III Nicholas Smith
Patrick Francel Ryan Smith
Christopher Gardner Stephen Steffes
William Gifford Katsuho Sueda
Laura Girling Geoffrey Svac
Gregory Gianato Natasha Teleford
Bertrand Giusti Ladimilla Tong
Heidi Himrich Julie Tyarowski
Stefanie Hobbs Jamie Vengari
Lisa Horn Melissa Wahl
Rachael Hopkins Troy Wallace
David Howland Tyrese West
Andrew Hsu Stephen Wiong
Andrew Johnson Terrell Washington
Stephen Kazmierski Derek Young
David Klein John Zhu

During the 2001-02 academic year, seem-
ingly every month there was a different spe-
cial event or lecture series held in the
department. While the Special Year ac-
counted for some of the excitement (see
page 1), other events drew many visitors
here. A chronological listing of the major
events and conferences this year follows.

Ziwt Lectures
In October, Professor Timothy Gowers
from Cambridge University and Princeton
presented the Ziwt Lectures. His talks, en-
titled “Ziwmot’s Theorem and Related Re-
sults” examined the theorem that states
that every set of integers of positive upper den-
sity contains arbitrarily long arithmetic pro-
gressions. Gowers presented his new, more
quantitative approach to the solution of this
theorem. The Ziwt lectures were estab-
lished through a bequest by Alexander
Ziwt, a professor in the UM Department of
Mathematics from 1888-1925.

Mathematics Career Day
In November, mathematics undergradu-
ates had the opportunity to interact with
alumni representing a variety of career op-
tions. Ten alumni working in insurance,
financial, industrial, business and educa-
tional concerns took the time to speak to
us and share career information with undergraduates majoring in math. About 100
students took advantage of this opportu-
nity to explore available career paths in
which to utilize their mathematics degrees.

Inaugural Collegiate Chair Lecture
Professor Philip Hanlon presented the
inaugural lecture of the Donald J. Lewis
Col-
lege of Professor Emeritus in Mathematics.
The professorship is named for Professor Emeri-
tus Donald J. Lewis, who served on the
departmental faculty for over 40 years. His
research lies in an area of number theory
concerned with Diophantine problems and
comprises the theory of algebraic number
fields and function fields and arithmetic
geometry. During Lewis’ ten years as chair,
the department developed a national reputa-
tion as a leader in innovative undergraduate
education, the department’s research
rankings rose into the top ten, and an inter-
derdisciplinary initiative was introduced.

Hanlon’s lecture to inaugurate his colle-
giate chair was entitled “New Frontiers in
Applied Mathematics.” The lecture dis-
cussed “discrete math,” a kind of math-
ematical problem that arises particularly in
applications to the information sciences.
As a specific application, he demonstrated
the mathematical structure of riffle shuffling,
the process most commonly used to shuffle
a deck of playing cards. Hanlon discussed
how riffle shuffling can be modelled as a
Markov (random) process. A fundamental
result is that within this model, the probabili-
ty of achieving a given ordering of the
cards after k shuffles depends only on the
number of rising sequences in that or-
dering, i.e., the number of times you have
to loop back to the start of the deck when you
trace the cards from smallest to largest. Us-
ing this fact, it is possible to determine how
many riffle shuffles are needed so that there
is nearly equal probability of being at any
ordering of the cards.

2001 Rainich Lectures
Professor Martin Nowak, the head of the
Theoretical Biology Program at the Insti-

tute for Advanced Studies at Princeton
delivered the G. Y. Rainich Lectures. Nowak
is a mathematical biologist. His three lec-
tures on distinct topics were entitled:
• Computational and Evolutional Aspects of
Language
• Chromosomal Instability of Human Can-
cers
• A (personal and incomplete) Perspective
of Language and Some Stories of Viruses

The Rainich Lectures were established
through a gift from Professor Emeritus
Raymond Wilder and his wife Una, to honor
Yuri Rainich, UM mathematics faculty mem-
ber from 1926-1956.

Marjorie Lee Browne Colloquium
This colloquium is the department’s ob-
servation of Martin Luther King Day. The
speaker this year was Professor Raymond L.
Johnson from the University of Maryland.
Johnson’s research is in the area of har-
monic analysis and weighted inequalities.
He served as chair of the Maryland Mathe-
ematics Department from 1991-1996.

Johnson’s talk “The Maryland Experi-
ence: a community of African American
graduate students” described the process
that led to the recruitment and graduation of
a significant number of African American
mathematics doctorates from the University
of Maryland. Johnson related his role in es-

ishing a network of students across dis-
ciplines, and the challenges he faced from
internal and external influences.

2002 Rainich Lectures
Another set of Rainich Lectures took
place in February, 2002. Professor Robert
MacPherson from the Institute for Adv-
canced Study in Princeton presented a se-
ries of lectures entitled “Combinatorial
Description of Topological Spaces.” The
lectures concerned a few modern aspects of
an old idea: to present a mathematical

AMS Sectional Meeting
The department was honored to have
been chosen to host one of the sectional
meetings of the American Mathematical So-
ciety. This event drew over 350 participants
to Ann Arbor. The three day event con-
sisted of hundreds of presentations on a
wide variety of mathematical topics. In con-
junction with the meeting, special sessions
were organized and presented. A special conference on “Curves and Their Moduli,”
organized by UM faculty, was presented prior to and during the AMS meeting.

Although the weather was gray, AMS organizers and attendees alike had high
praise for the department’s hosting of the event. The mathematicians were impressed
by the depth of research occurring here, as well as the opportunity for exposure
to other disciplines via seminars and lectures.

Great Lakes Geometry Conference
The department was host to the 42nd
annual Great Lakes Geometry Conference.
This meeting circulates among the math de-
partments in Madison, Evanston, East
\(3 \)
Notes from Chair Alejandro Uribe

In many ways this has been a transitional year for the department. The first year after Al Taylor’s experienced and dedicated leadership, we moved into a “bottom line” budgeting system that gives the department more control, and more responsibility, over expenditures. The events of 9/11 and the departure of much of the leadership of the University of Michigan presented additional uncertainty this year. I had much to learn as a first-time interim chair, but thanks to the dedication and support of the associate chairs, the executive and personnel committees, and AI’s frequent advice, the department navigated through these administrative changes fairly smoothly.

The department hosted what I believe must be a record number of conferences. We had two conferences associated with the special year in complex variables, organized by John Erik Fornæss and supported primarily by the returns from the Gehring endowment. The department also hosted a regional AMS meeting in March 2002, which attracted about 350 mathematicians, and the Great Lakes Geometry Conference organized locally by Dan Burns. Adding to this the usual amount of seminars and colloquia, the level of research activities in the department was extraordinary. Many of our faculty received significant awards and honors, some of which are highlighted in this issue of Continua.

It is not the role of an interim chair to set long-term policies, so I concentrated on short-term goals. Much effort went into recruiting, both faculty and graduate students. Under the leadership of Stafford Tolmie, the department navigated through these administrative changes fairly smoothly.

It has been said that the strength of a department resides in its faculty, and I know this faculty will support Trevor Wooley to lead the department to new heights.

- Alejandro Uribe

Alumni/ae Updates

John R. Carney (BS & MS ’48, PhD Philosophy ’57) retired from the faculty of the University of Colorado, Boulder, and now lives in the mountains of Colorado. He is also included in the 2002 edition of Who’s Who in the World.

Grants and Awards continued to flow into the department, and many candidates for faculty positions were interviewed. I confirmed that, as a result of the leadership of the very important introductory program.

There are significant ongoing changes in the leadership of the very important introductory program. Mort Brown stepped down as director of the program this year, a position now filled by Pat Shure, and Bob Megginson is on leave at the Mathematical Sciences Research Institute in Berkeley, Calif., where he will be deputy director for the next two years. It is imperative that the department continues to support this program by finding strong leaders. Recruiting efforts in this direction were not successful at the college level this year, which led to an intense dialogue between the department, the dean, and the LSA executive committee. I think the result is very positive. We now have official recognition from the college of our need for a tenured leadership position for the introductory program, with specific criteria for tenure. I believe this is a solid basis on which the department can recruit outstanding faculty for this role.

Being chair has been an extraordinary, often exciting, experience, well described by Jefferson’s phrase splendid misery. As I step down after two years of administrative service, first as associate chair and then as interim chair, I find the department healthy and strong and I look forward to the quiet of academic work. I am also very grateful to all who worked so hard in service roles to make this transitional year go smoothly. It has been said that the strength of a department resides in its faculty, and I know this faculty will support Trevor Wooley to lead the department to new heights.

Lois’ husband Chip considered various options when establishing the memorial fund at UM. “Lois has such a great love for Michigan, and I wanted to choose an appropriate venue for the memorial service. The first look. I thought at the athletic department because Lois was such a big fan, but the need wasn’t there. We’ve participated in the Martha Couch building fund, but that did not seem personal enough. I think that this award is the perfect way to continue Lois’ support for mathematics education.”

“In the main point of the memorial fund is to simultaneously honor her love of UM and her love of teaching (and teaching mathematics in particular),” says her son Adam. “It alsooccur...”

Scott Price (MS ’83) has worked in real estate for the past five years. He uses his analytical backbone to advise buyers and sellers on the market.

Marc Altschull (BS ’94) is an actuarial consultant with Tillinghast-Towers Perrin in Atlanta.

Greg Martin (MS ’94, PhD ’97) is an assistant professor in the Mathematics Department at the University of British Columbia in Canada.

Tracy Payne (PhD ’95) is a tenure-track faculty member at Idaho State University in Pocatello.

Celebrating Martin Luther King Day

Adding to this the usual amount of seminars and colloquia, the level of research activities in the department was extraordinary. Many of our faculty received significant awards and honors, some of which are highlighted in this issue of Continua.

Memorial Fund Honors Alumna

After a courageous 32-year battle against metastatic breast cancer, Lois Zook Levy (BS ’59, MS ’62) passed away on April 4, 2002. She is survived by her husband Hiram (Chip) Levy, her sons Joshua and Adam, and two grandchildren.

To honor her memory, her family has established the Lois Zook Levy Memorial Award fund in the Department of Mathematics.

The award will be given annually to the University of Michigan graduate student who plans to teach mathematics at the K-12 level.

Lois was a dedicated alumna of UM, who cared deeply about supporting education at all levels. To Lois, education and learning were top priorities. She began her career teaching high school mathematics in Illinois and then continued this work when she moved to Massachusetts with her husband in 1964. Shortly thereafter she settled with her family in New Hope, Pennsylvania, in Bucks County.

Her family reports that Lois tried to incorporate learning into all aspects of their lives. “My mom was a phenomenal cub scout den mother,” recalls her son Adam. “She loved every detail, and taught us so much that she passed along. Moreover, she was extremely fond of the University of Michigan and the time she spent there.”

Her family reports that Lois tried to incorporate learning into all aspects of their lives. “My mom was a phenomenal cub scout den mother,” recalls her son Adam. “She loved every detail, and taught us so much that she passed along. Moreover, she was extremely fond of the University of Michigan and the time she spent there.”

So far 50 of Lois’ friends, family members, and associates have contributed to the fund. When fully endowed, the fund should provide an annual award of about $1500. This award will allow the department to reward promising mathematics students for their demonstrated talent and dedication. By giving the award to students who plan to pursue a career in mathematics education, it emphasizes the importance of developing knowledgeable and capable teachers of mathematics.

John R. Carney (BS & MS ’48, PhD Philosophy ’57) retired from the faculty of the University of Colorado, Boulder, and now lives in the mountains of Colorado. He plans to spend the rest of his life hiking in southern Utah.

Lois was a dedicated alumna of UM, who cared deeply about supporting education at all levels. To Lois, education and learning were top priorities. She began her career teaching high school mathematics in Illinois and then continued this work when she moved to Massachusetts with her husband in 1964. Shortly thereafter she settled with her family in New Hope, Pennsylvania, in Bucks County.

Her family reports that Lois tried to incorporate learning into all aspects of their lives. “My mom was a phenomenal cub scout den mother,” recalls her son Adam. “She loved every detail, and taught us so much that she passed along. Moreover, she was extremely fond of the University of Michigan and the time she spent there.”

Lois was a dedicated alumna of UM, who cared deeply about supporting education at all levels. To Lois, education and learning were top priorities. She began her career teaching high school mathematics in Illinois and then continued this work when she moved to Massachusetts with her husband in 1964. Shortly thereafter she settled with her family in New Hope, Pennsylvania, in Bucks County.

Her family reports that Lois tried to incorporate learning into all aspects of their lives. “My mom was a phenomenal cub scout den mother,” recalls her son Adam. “She loved every detail, and taught us so much that she passed along. Moreover, she was extremely fond of the University of Michigan and the time she spent there.”

So far 50 of Lois’ friends, family members, and associates have contributed to the fund. When fully endowed, the fund should provide an annual award of about $1500. This award will allow the department to reward promising mathematics students for their demonstrated talent and dedication. By giving the award to students who plan to pursue a career in mathematics education, it emphasizes the importance of developing knowledgeable and capable teachers of mathematics.

Scott Price (MS ’83) has worked in real estate for the past five years. He uses his analytical backbone to advise buyers and sellers on the market.

Marc Altschull (BS ’94) is an actuarial consultant with Tillinghast-Towers Perrin in Atlanta.

Greg Martin (MS ’94, PhD ’97) is an assistant professor in the Mathematics Department at the University of British Columbia in Canada.

Tracy Payne (PhD ’95) is a tenure-track faculty member at Idaho State University in Pocatello.
The Department of Mathematics celebrated the Fred and Lois Gehring Special Year in Complex Analysis during the 2001-02 academic year. Supported through the Gehring Chair endowment, the Special Year provided an opportunity to invite several distinguished visitors to the department and host two conferences.

John Erik Fornæss, the Frederick W. Gehring Collegiate Professor of Mathematics, organized the special year and the conferences in the department. “This special year allowed us to really focus our research efforts and collaborate with some exciting visitors,” says Fornæss. “I hope that this provided a great opportunity for the department members, especially the younger faculty and graduate students in the field, for real scholarly interaction with some of the most innovative researchers in complex analysis.”

The two special conferences held this year contributed to the scholarly pursuits of department members and visitors. In October 2001 the complex analysis conference attracted more than 100 mathematicians. This three and a half day event consisted of over 35 research presentations by mathematicians from around the world, and included a banquet honoring Fred and Lois Gehring on Saturday night.

A second conference, held in March 2002, concentrated on complex dynamics. This smaller conference was filled with exciting research and interaction among the visiting mathematicians and UM faculty and students.

Three mathematicians held Gehring Visiting Professorships during the year. Pekka Koskela, from the University of Jyväskylä, Finland, was in the department for the full academic year. Koskela is a well-known expert in complex analysis. Klas Diederich, from the University of Wuppertal, Germany, was a Gehring Visiting Professor in the fall. Diederich is a frequent visitor to the department and is a leading researcher in several complex variables. Eric Bedford, from Indiana University, held a Gehring Visiting Professorship in the winter term. Bedford received his PhD from UM in 1974, under the direction of Al Taylor, and is known for his groundbreaking research in several complex variables and complex dynamics.

Three mathematicians held Gehring Visiting Professorships during the year: Pekka Koskela, from the University of Jyväskylä, Finland; Klas Diederich, from the University of Wuppertal, Germany; and Eric Bedford, from Indiana University.

Other Gehring Special Year Long-Term Visitors

- Stephen Buckley – National University of Ireland
- Jeffrey Diller – University of Notre Dame
- Chiara De Fabritiis – University of Ancona, Italy
- Constanze Eppel – University of Wuppertal, Germany
- Joseph Globevnik – University of Ljubljana, Slovenia
- Kari Hag – Norwegian University of Science and Technology, Trondheim, Norway
- Per Hager – Norwegian University of Science and Technology, Trondheim, Norway
- Piotr Hajłasz – University of Warsaw, Poland
- Jose Llorente – Autonomous University of Madrid, Spain
- Katarzyna Maegawa – University of Kyoto, Japan
- Nina Oriani – University of Oslo, Norway
- Pietro Poggi-Corradini – Kansas State University
- Anca Popa-Fischer – University of Wuppertal, Germany
- Yuri Reshetnyak – Institute of Mathematics, Novosibirsk, Russia
- Ritva Hurri-Syrjanen – University of Helsinki, Finland