Freeze-in versus Glaciation: Freezing into a thermalized hidden sector

Nicolas Fernandez

"Brown bag" seminar March 2021

University of Michigan

Based on NF, Kahn and Shelton in prep.

Dark Matter also have feelings

Take home massage

As soon as one allows for an initial thermalized population in the dark sector, the freeze-in standard story line expands to a "glaciation band" which is currently being proved by direct-detection experiments

*Very subjective and not complete

Freeze-out Or the art of getting rid of stuff

Freeze-out (WIMP)

- Relic abundance is independent of initial conditions
- Fine with BBN (masses > few MeV)
- Experimentally testable. Past ~15 years

Freeze-in Or the art of getting enough with less

- Relic abundance is independent of initial conditions*
- Fine with BBN and Neff (masses > keV)
- Experimentally testable soon! Very exciting!

1/T

Freeze-in Or the art of getting less and just enough

Freeze-in Or the art of getting less and just enough

Freeze-in Or the art of getting less and just enough

 Relic abundance is independent of initial conditions

- X X X X Freeze-in (FIMP)
- Fine with BBN and Neff (masses > keV)
- Experimentally testable soon! Very exciting!

1/T

Freeze-in

thermal densi

> dark m dens

Or the art of getting less and just enough

The standard freeze-in paradigm has a hidden UV sensitivity in that the initial DM population is assumed to be exactly zero.

Explicit Model: Kinetic mixing portal Dark photon

 $\mathcal{L} = -\frac{1}{4}\tilde{Z}_{\mu\nu}^{\prime}\tilde{Z}^{\prime\mu\nu} - \frac{\epsilon}{2\cos\theta_{W}}\tilde{Z}_{\mu\nu}^{\prime}\tilde{B}^{\mu\nu} - \frac{1}{2}m_{Z_D}^2\tilde{Z}_{D\mu}\tilde{Z}_{D\mu} + g_{\chi}J_D^{\mu}\tilde{Z}_{D\mu} + \bar{\chi}\left(i\gamma^{\mu}\partial_{\mu} - m_{\chi}\right)\chi,$

 $m_{Z_D} \ll m_Z$ (ultra light mediator)

 $\mathcal{L} \supset -\epsilon e J_{\rm EM}^{\mu} Z_{D\mu} + \epsilon g_{\chi} \tan \theta_W J_D^{\mu} Z_{\mu} + g_{\chi} J_D^{\mu} Z_{D\mu} ,$

[X. Chu, T.H., M.Tytgat '11]

Explicit Model: Kinetic mixing portal Dark photon

 $\mathcal{L} = -\frac{1}{4}\tilde{Z}_{\mu\nu}^{\prime}\tilde{Z}^{\prime\mu\nu} \left[-\frac{\epsilon}{2\cos\theta_W}\tilde{Z}_{\mu\nu}^{\prime}\tilde{B}^{\mu\nu}\right] - \frac{1}{2}m_{Z_D}^2\tilde{Z}_{D\mu}\tilde{Z}_D^{\mu} + g_{\chi}J_D^{\mu}\tilde{Z}_{D\mu} + \bar{\chi}\left(i\gamma^{\mu}\partial_{\mu} - m_{\chi}\right)\chi,$

 $m_{Z_D} \ll m_Z$ (ultra light mediator)

 $\mathcal{L} \supset -\epsilon e J_{\rm EM}^{\mu} Z_{D\mu} + \epsilon g_{\chi} \tan \theta_W J_D^{\mu} Z_{\mu} + g_{\chi} J_D^{\mu} Z_{D\mu} ,$

[X. Chu, T.H., M.Tytgat '11]

Explicit Model: Kinetic mixing portal

 $\mathcal{L} \supset -\epsilon e J^{\mu}_{\rm EM} Z_{D\mu} + \epsilon g_{\chi} \tan \theta_W J^{\mu}_D Z_{\mu} + g_{\chi} J^{\mu}_D Z_{D\mu} ,$

 $1 \text{MeV} < m_{\chi} < 1 \text{GeV}$

Explicit Model: Kinetic mixing portal

 $\mathcal{L} \supset -\epsilon e J^{\mu}_{\rm EM} Z_{D\mu} + \epsilon g_{\chi} \tan \theta_W J^{\mu}_D Z_{\mu} + g_{\chi} J^{\mu}_D Z_{D\mu} , \qquad \alpha_D = \frac{g_{\chi}^2}{4\pi}$

 $1 \text{MeV} < m_{\chi} < 1 \text{GeV}$

 $\langle \sigma v \rangle \propto \epsilon^2 \alpha_D$

Explicit Model: Kinetic mixing portal

 $\mathcal{L} \supset -\epsilon e J^{\mu}_{\rm EM} Z_{D\mu} + \epsilon g_{\chi} \tan \theta_W J^{\mu}_D Z_{\mu} + g_{\chi} J^{\mu}_D Z_{D\mu} ,$ $\alpha_D = \frac{g_{\chi}^2}{4\pi}$

 $Z \sim$

 $m_{\chi} > 1 \text{GeV}$

 $\langle \Gamma_{Z \to \chi \chi} \rangle \propto \epsilon^2 \alpha_D$

- We explore how a pre-existing population of DM, either alone or as part of a thermalized dark sector, affects the dynamics of freeze-in.
- For a kinetically mixed dark photon, the dominant source of energy injection into the hidden sector is through DM pair production (thermal corrections).
- Elastic processes are fast enough for instantaneous kinetic equilibrium.

Scenario

Boltzmann Equation

Number density of DM:

$$\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma v \rangle_{fo}^{\tilde{T}} (n_{\chi}^2 - n_{eq}^2)$$

Energy density of the HS:

 $\dot{\rho}_{HS} + 3H(\rho_{HS} + P_{HS}) = \langle \sigma v E \rangle_{fi}^{T} n_{eq}^{2}(T)$

 $(\tilde{T})) + \langle \sigma v \rangle_{fi}^T n_{eq}^2$

Boltzmann Equation

Number density of DM:

$$\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma v \rangle_{fo}^{\tilde{T}} (n_{\chi}^2 - n_{eq}^2(\tilde{T})) + \langle \sigma v \rangle_{fi}^{T} n_{eq}^2$$

Energy density of the HS:

$$\dot{\rho}_{HS} + 3H(\rho_{HS} + P_{HS}) = \langle \sigma v E \rangle_{fi}^T \eta$$

$$\mu_{\chi}$$

$$\hat{r}_{eq}^2(T)$$
 \tilde{T}

Boltzmann Equation

$$\chi\chi\leftrightarrow Z_DZ$$

Number density of DM:
$$\dot{n}_{\chi}+3Hn_{\chi}=-\langle\sigma v\rangle_{fo}^{\tilde{T}}(n_{\chi}^2-n_{eq}^2(n_{\chi}^2))$$

Energy density of the HS:

 $\dot{\rho}_{HS} + 3H(\rho_{HS} + P_{HS}) = \langle \sigma v E \rangle_{fi}^{T} n_{e}^{T}$

D

$$(\tilde{T})) + \langle \sigma v \rangle_{fi}^{T} n_{eq}^{2}$$

$$f \bar{f} \to \chi \chi$$

$$v_{eq}^2(T)$$

- Instantaneous kinetic equilibration correct? Parameter space?
- Initial condition \bullet

Instantaneous kinetic equilibration of DM $\chi \bar{\chi}$ -

Momentum transferred:

 $\mathcal{C}^p_{1\,2\to3\,4}(T,\tilde{T}) = n_1^{\mathrm{eq}}(T)n_2^{\mathrm{eq}}(\tilde{T})\langle\sigma vp\rangle$ $= -\frac{g_1 g_2 T^4 \tilde{T}^3}{32\pi^4} \int_{\tilde{s}_{min}}^{\infty} d\tilde{s} \, \frac{\lambda^{\frac{1}{2}} (\tilde{s}^2, x_1, x_2)}{\tilde{s}}$

$$\rightarrow \chi \chi \qquad (12 \rightarrow 34) \qquad T_1 \neq T_2 \\ x_i = \frac{m_i}{T_i}$$

$$\sigma(s) \left(\lambda(\tilde{s}^2, x_1, x_2) K_2(\tilde{s}) + 4\tilde{s}x_1^2 K_1(\tilde{s}) \right)$$
$$s = \tilde{s}^2 T \tilde{T} + (T - \tilde{T})(T x_1^2 - \tilde{T} x_2^2), \quad \tilde{s}_{\min} = x_1$$

23

Instantaneous kinetic equilibration of DM

Momentum transferred:

$$\rightarrow \chi \chi \qquad (12 \rightarrow 34) \qquad T_1 \neq T_2 \\ x_i = \frac{m_i}{T_i}$$

$$\sigma(s) \left(\lambda(\tilde{s}^2, x_1, x_2) K_2(\tilde{s}) + 4\tilde{s}x_1^2 K_1(\tilde{s}) \right)$$
$$s = \tilde{s}^2 T \tilde{T} + (T - \tilde{T})(T x_1^2 - \tilde{T} x_2^2), \qquad \tilde{s}_{\min} = x_1$$

Instantaneous kinetic equilibration of DM

Momentum transferred:

$$\begin{aligned} \mathcal{C}_{1\,2\to3\,4}^{p}(T,\tilde{T}) &= n_{1}^{\text{eq}}(T)n_{2}^{\text{eq}}(\tilde{T})\langle\sigma vp\rangle \\ &= -\frac{g_{1}g_{2}T^{4}\tilde{T}^{3}}{32\pi^{4}} \int_{\tilde{s}_{\min}}^{\infty} d\tilde{s} \,\frac{\lambda^{\frac{1}{2}}(\tilde{s}^{2},x_{1},x_{2})}{\tilde{s}}\sigma(s)\left(\lambda(\tilde{s}^{2},x_{1},x_{2})K_{2}(\tilde{s}) + 4\tilde{s}x_{1}^{2}K_{1}(\tilde{s})\right) \end{aligned}$$

Have you seen this formula?

$$T_1 \neq T_2$$
$$x_i = \frac{m_i}{T_i}$$

 $s = \tilde{s}^2 T \tilde{T} + (T - \tilde{T})(T x_1^2 - \tilde{T} x_2^2), \qquad \tilde{s}_{\min} = x_1 + x_2$

- Two different temperatures
- One Integration variable left

Thermally averaged momentum loss:

$$\Gamma_{p \, \text{loss}} \approx \left\langle \frac{dp}{dt} \right\rangle \frac{1}{\langle p \rangle}$$

Instantaneous kinetic equilibration of DM

 $\frac{1}{\langle p \rangle} = \frac{n_{2eq}(\tilde{T}) \langle \sigma_T v p \rangle}{\langle p \rangle}$

Instantaneous kinetic equilibration of DM Vs **DM self-interaction constraints**

 $\chi_1\chi_2 \to \chi_1\chi_2$

 $\chi_1 \bar{\chi}_2 \to \chi_1 \bar{\chi}_2$

 $\chi_1 Z_D \to \chi_1 Z_D$

Initial condition DM

Freeze-in or freeze-out?

Parameter space and DM relic abundance

DM relic abundance

DM relic abundance

NF, Kahn and Shelton in prep.

How the the freeze-in line is affected?

SENSEI 2020

SEINSEI: [2004.11378]

Current Experiments

Current Experiments are testing this parameter space

Current Experiments are testing this parameter space

We could be probing the freeze-in scenario with current experiments!

UV insensitive

Conclusion

abundance.

• The standard freeze-in paradigm, this same combination of couplings appears in the annihilation cross section, leading to a 1-to-1 relation between thermal history parameter space and direct detection parameter space. As soon as one allows for an initial thermalized population in the dark sector, this "freeze-in line" expands to a "glaciation band" because there are multiple points in the $\varepsilon - \alpha_{D}$ plane which achieve the correct relic

Thanks