Adventures in Non-supersymmetric String Theory

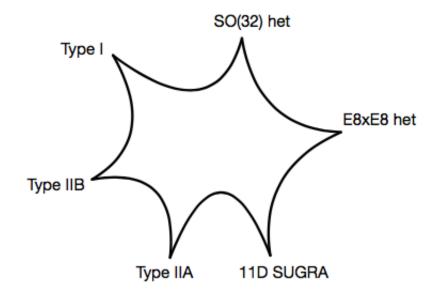
Justin Kaidi

University of Michigan January 28, 2021

[2010.10521] JK
[1908.04805] JK, Parra-Martinez, Tachikawa
[1911.11780] JK, Parra-Martinez, Tachikawa

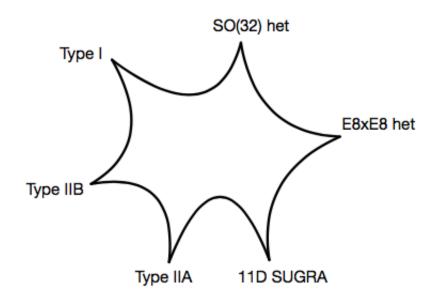
Spectrum of String Theories

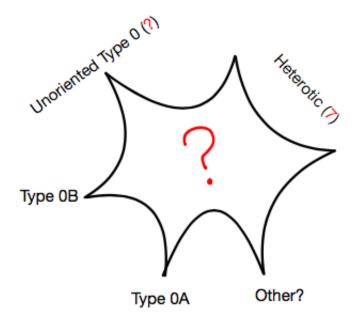
• In the 90s, it was discovered that SUSY string theories are different limits of a single underlying theory:



Spectrum of String Theories

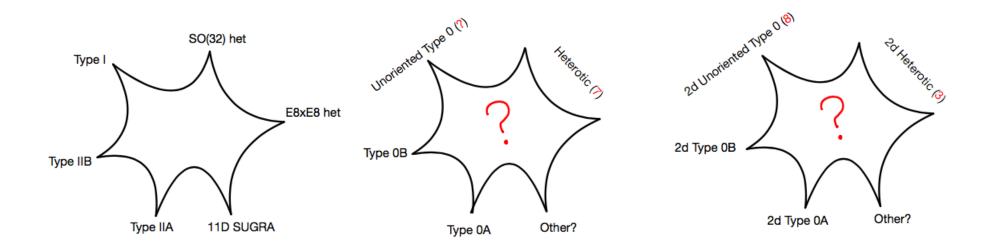
- In the 90s, it was discovered that SUSY string theories are different limits of a single underlying theory.
- But there also exist non-SUSY string theories
 - Type 0A/B, unoriented Type 0 strings, and 7 heterotic strings





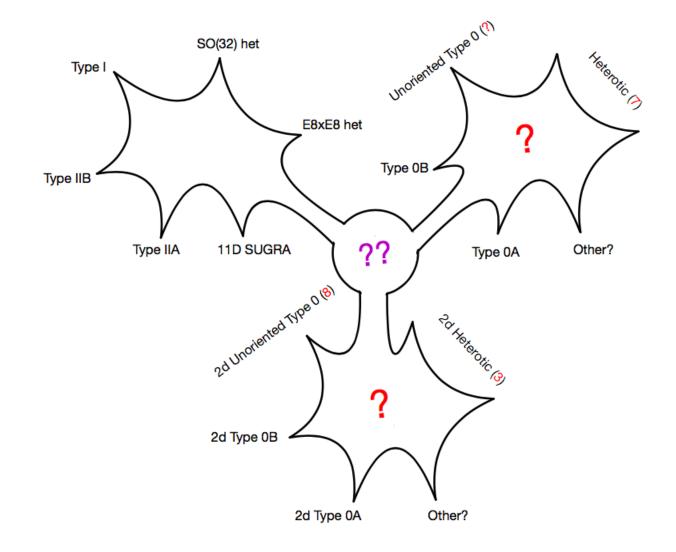
Spectrum of String Theories

- In the 90s, it was discovered that SUSY string theories are different limits of a single underlying theory.
- \bullet But there also exist $non\mathchar`SUSY$ string theories
 - Type 0A/B, unoriented Type 0 strings, and 7 heterotic strings
- There are also string theories in dimensions lower than 10d. In particular, much study on 2d strings [Takayanagi, Toumbas '03; Douglas, Klebanov, Kutasov, Maldacena, Martinec, Seiberg '03]
 - 2d Type 0A/B, unoriented 2d Type 0 strings, and 3 heterotic strings



Guiding Principle

• String theory is a unique theory of Quantum Gravity



Tachyons

non-SUSY string theories generically have closed string tachyons

– Exceptions: Pin⁺ Type 0, $O(16) \times O(16)$ heterotic, Type \tilde{I}

- But the presence of a tachyon doesn't mean the theory is inconsistent. Rather, it means we're expanding about the wrong vacuum.
- As long as there exists one stable vacuum, the theories are consistent
- The stable vacua may be lower-dimensional - In many cases, they will be known two-dimensional string theories
- Goal: Classify the non-SUSY 10d strings and find stable vacua for them Part 1: Classify unoriented Type 0 strings Part 2: Find stable vacua for non-SUSY heterotic strings

Part I

Part I: Classifying unoriented Type 0 strings

GSO Projection

- Work in NS-R formalism in lightcone gauge; $(X_{L,R}^i, \psi_{L,R}^i)$ with i = 1, ..., 8
- The spectrum of the physical string is obtained by doing a GSO projection [Gliozzi, Scherk, Olive '77]
 - Allowed GSO projections must project onto subsectors satisfying e.g. closure of OPE, mutual locality, and modular invariance of torus amplitudes.
- GSO projection can also be thought of as a sum over spin structures [Seiberg, Witten '86]
 - Different GSO projections correspond to possible phases assigned to spin structures in a way compatible with cutting/gluing of worldsheet.
 - For example for Type IIA/B, can have

$$Z[T^2;\alpha] = \left(\sum_{gh=hg} \alpha_L(g,h) \stackrel{\text{\tiny def}}{=} \right) \times \left(\sum_{gh=hg} \alpha_R(g,h) \stackrel{\text{\tiny def}}{=} \right)$$

with $\alpha(NS, NS) = \alpha(NS, R) = \alpha(R, NS) = 1$ and $\alpha(R, R) = \pm 1$.

SPT Phases

• For our purposes, an SPT phase is a gapped theory with unique ground state on a manifold without boundary,

 $Z[X] \in U(1) \qquad \quad \partial X = \emptyset$

• The partition function will only depend on the bordism class of X, [Kapustin '14; Kapustin, Thorngren, Turzillo, Wang '15]

 $Z:\Omega^s_d(BG)\to U(1)$

s = structure of tangent bundle, G = structure of principal bundle.

• Hence *d*-dimensional SPT phases are classified by

 $\mathcal{O}_s^d(BG) := \operatorname{Hom}\left(\Omega_d^s(BG), U(1)\right)$

• In the presence of boundary, we can have gapless edge modes.

Kitaev Chain and Arf Invariant

• We'll mainly be concerned with fermionic SPTs. The simplest case is the Kitaev chain/Majorana wire [Kitaev '01]

- Has been realized experimentally [Mourik et al '12]
- The partition function of this phase on a manifold with spin structure σ is

 $Z[\Sigma, \, \sigma] = e^{\pi i \operatorname{Arf}(\Sigma, \, \sigma)}$

• One can calculate

Type 0 Strings

• Indeed, consider possible SPT phases we can add to the worldsheet,

$$\mathcal{U}_{\mathrm{Spin}}^2(pt) = \mathbb{Z}_2 = \left\langle (-1)^{\mathrm{Arf}(\Sigma,\,\sigma)} \right\rangle$$

• Two different worldsheet theories with following torus partition functions

- So two different points of view
 - (1) No SPT phase, but use different projectors, i.e. P_{0B} vs. P_{0A} .
 - (2) Sum over spin structure with non-trivial SPT phase.

Unoriented Type 0 Strings

• Let's now allow worldsheets to be unoriented.

- Two options: $Pin^-: w_2 + w_1^2 = 0$ $Pin^+: w_2 = 0$

• Possible SPT phases:

$$\begin{aligned}
\mathcal{O}_{\mathrm{Pin}^{-}}^{2}(pt) &= \mathbb{Z}_{8} = \left\langle e^{\pi i \mathrm{ABK}(\sigma)/4} \right\rangle \\
\mathcal{O}_{\mathrm{Pin}^{+}}^{2}(pt) &= \mathbb{Z}_{2} = \left\langle (-)^{\mathrm{Arf}(\hat{\sigma})} \right\rangle
\end{aligned}$$

with $\hat{\sigma}$ the spin structure on the oriented double cover.

- Prediction: an 8 + 2(?) = 10-fold classification of unoriented Type 0 strings, matching with the Altland-Zirnbauer classification of topological superconductors.
- Some scattered results in the literature [Bergman, Gaberdiel '99; Blumenhagen, Font, Lüst '99], but nothing complete.

D-branes and K-theory

• This leads to a rich spectrum of stable D-branes:

	-1	0	1	2	3	4	5	6	7	8	9
\widetilde{K}	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
\widetilde{K}^1	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
DKO	$2\mathbb{Z}_2$	$2\mathbb{Z}_2$	$2\mathbb{Z}$	0	0	0	$2\mathbb{Z}$	0	$2\mathbb{Z}_2$	$2\mathbb{Z}_2$	$2\mathbb{Z}$
DKO^1	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	\mathbb{Z}	0	$\mathbb Z$	0	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2
DKO^2	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$2\mathbb{Z}$	0	\mathbb{Z}_2
DKO^3	0	\mathbb{Z}	0	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	\mathbb{Z}	0	\mathbb{Z}	0
DKO^4	0	0	$2\mathbb{Z}$	0	$2\mathbb{Z}_2$	$2\mathbb{Z}_2$	$2\mathbb{Z}$	0	0	0	$2\mathbb{Z}$
DKO^5	0	\mathbb{Z}	0	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	\mathbb{Z}	0	\mathbb{Z}	0
DKO^6	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	$2\mathbb{Z}$	0	\mathbb{Z}_2
DKO^7	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	\mathbb{Z}	0	\mathbb{Z}	0	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2	$\mathbb{Z}\oplus\mathbb{Z}_2$	\mathbb{Z}_2

• Additional information:

- None of the unoriented Type 0 strings has spacetime SUSY
- All RR tadpoles can be cancelled. NSNS tadpoles can be cancelled by adding branes, or via Fischler-Susskind mechanism
- The Pin⁻ strings have closed string tachyons, but Pin⁺ strings are tachyon-free

Part II

Part II: Stable vacua for heterotic strings

Tachyonic Heterotic Strings

- Tachyonic heterotic strings are constructed as follows:
- Start with $(X_{L,R}^i, \psi_L^i)$ with $i = 1, \ldots, 8$ and λ_R^a with $a = 1, \ldots, 32$
- Simplest partition function is

$$Z = \frac{1}{2|\eta|^{16}} \sum_{gh=hg} \left(\underbrace{\downarrow}_{\mu} \underbrace{\downarrow}_{\mu} \right)^8 \times \left(\underbrace{\downarrow}_{\mu} \underbrace{\downarrow}_{\mu} \underbrace{\downarrow}_{\mu} \right)^{32}$$
$$= 32(q\bar{q})^{-\frac{1}{2}} + 4032 + \dots$$

This theory has 32 tachyons, 4032 massless bosons
 – graviton (35), B-field (28), dilaton (1), and 496 gauge bosons of SO(32)

[Kawai, Lewellen, Tye '86; Dixon, Harvey '86]

Tachyonic Heterotic Strings

• The worldsheet theory studied before has a $(\mathbb{Z}_2)^5$ symmetry,

$$g_1 = \sigma_3 \otimes \mathbb{1}_2 \otimes \mathbb{1}_2 \otimes \mathbb{1}_2 \otimes \mathbb{1}_2,$$

 $g_3 = \mathbbm{1}_2 \otimes \mathbbm{1}_2 \otimes \sigma_3 \otimes \mathbbm{1}_2 \otimes \mathbbm{1}_2 , \qquad g_4 = \mathbbm{1}_2 \otimes \mathbbm{1}_2 \otimes \mathbbm{1}_2 \otimes \sigma_3 \otimes \mathbbm{1}_2 ,$

 $q_5 = \mathbb{1}_2 \otimes \mathbb{1}_2 \otimes \mathbb{1}_2 \otimes \mathbb{1}_2 \otimes \sigma_3$.

 $q_2 = \mathbb{1}_2 \otimes \sigma_3 \otimes \mathbb{1}_2 \otimes \mathbb{1}_2 \otimes \mathbb{1}_2$,

- Each \mathbb{Z}_2 acts as -1 on 16 of the λ^a and as +1 on others
- We can now gauge $(\mathbb{Z}_2)^n$ for $0 \le n \le 5$. - This breaks $SO(32) \not\rightarrow SO(2^{5-n}) \times SO(32-2^{5-n})$

n	tachyons	massless fermions	gauge bosons	gauge group
0	32	0	496	SO(32)
1	16	256	368	$O(16) \times E_8$
2	8	384	304	$O(8) \times O(24)$
3	4	448	272	$(E_7 \times SU(2))^2$
4	2	480	256	U(16)
5	1	496	248	E_8

Tachyon Condensation

- All of the heterotic strings above have tachyons. We now try to condense them [Hellerman, Swanson '06; '07]
- Say $\tilde{\lambda^a}$ are subset of λ^a invariant under $SO(2^{5-n})$. Condensation produces superpotential

$$W = \sum_{a=1}^{2^{5-n}} \tilde{\lambda^a} \mathcal{T}^a(X)$$

• Linearized equation of motion for $\mathcal{T}^a(X)$,

$$\partial^{\mu}\partial_{\mu}\mathcal{T}^{a} - 2\partial^{\mu}\phi\partial_{\mu}\mathcal{T}^{a} + \frac{2}{\alpha'}\mathcal{T}^{a} = 0$$

• One solution

$$\phi = -\frac{2^{\frac{3-n}{2}}}{\sqrt{\alpha'}}X^{-}, \qquad \mathcal{T}^{a} = m\sqrt{\frac{2}{\alpha'}}e^{\beta X^{+}}X^{a+1}$$

Condensation to d > 2

• Previous solution gives the following scalar potential

$$V = Ae^{2\beta X^{+}} \sum_{a=1}^{2^{5-n}} (X^{a+1})^{2} - Be^{\beta X^{+}} \sum_{a=1}^{2^{5-n}} \tilde{\lambda^{a}} \psi^{a+1} + \dots$$

• As $X^+ \to \infty$, fluctuations along $X^2, \ldots, X^{2^{5-n}+1}$ are suppressed, and we get a theory in $d = 10 - 2^{5-n}$ localized at $X^2 = \cdots = X^{2^{5-n}+1} = 0$.

n	d	massless fermions	gauge bosons	gauge group
3	6	112	266	$E_7 \times E_7$
4	8	240	255	SU(16)
5	9	248	248	E_8

• Low-energy gravity+gauge theories can be checked to be anomaly-free!

Condensation to d = 2

- For n < 2, then $d = 10 2^{5-n} < 0$ so this doesn't work.
- In these cases we simply condense to d = 2, where dilaton background lifts remaining tachyons:

n	d	massless bosons	massless fermions	gauge group
0	2	24	0	O(24)
1	2	8	8	$O(8) \times E_8$
2	2	0	12	O(24)

- The three theories obtained in this way are precisely the three 2d heterotic strings known in the literature! [Davis, Larsen, Seiberg '05]
- We have thus connected the known 2d theories with non-SUSY 10d theories via dynamical transitions.

Conclusion

- I) The worldsheets of different string theories can differ by subtle topological terms. These terms explain the different GSO projections, D-brane spectra, and orientifoldings allowed in the theories.
- 2) Tachyonic strings admit lower-dimensional stable vacua. Many of these are known 2d strings.
- Possible future extensions:
 - 1) SPT phases for heterotic worldsheets, e.g. $|\mathcal{O}_{\text{Spin}}^2(B\mathbb{Z}_2^5)| = 65,536!$
 - 2) Worldsheet domain walls?
 - 3) Orbifolds: beyond discrete torsion
- There is still much to explore in perturbative string theory!

Exploring non-SUSY Strings

The End (for now)

Thank you!