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Plan of the talk

Motivations: Spectrum of near-extremal black holes

BTZ black hole in AdS;

-+  Einstein Gravity

4D charged black hole

Same examples in Supergravity



Motivations, Near Extremal BH



Near-Extremal Black Hole

Flat Space

=

AdS, x §?
0

e Large Charge and Large Extremal Bekenstein-Hawking Entropy/ Large Area

e Low Temperature/ Near-Extremal Limit E=M- Q



Black Hole Thermo: Issues

Bekenstein-Hawking Entropy vs (low) T

S = wQ* + 4n°Q°T

Energy vs (low) T

Gap-Scale: Thermodynamical description was thought to break down

E-E,

[Preskill, Schwarz, Shapere,
1 Trivedi, Wilczek 91]
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We argue that the description of a black hole as a statistical (thermal) object must
break down as the extreme (zero-temperature) limit is approached, due to uncontrollable
thermodynamic fluctuations. For the recently discovered charged dilaton black holes, the
analysis is significantly diflerent, but again indicates that a statistical description of the
extreme hole is inappropriate. These holes invite a more normal elementary particle
interpretation than is possible for Reissner—Nordstrom holes.




Spectrum of near-extremal
black holes??

e Statistical Description breaks down at low energies? _
[Preskill et al 91]
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Spectrum of near-extremal
black holes??

e Proposal from microscopic models of BHs: gap  [Maldacena, Susskind 96]

[Maldacena, Strominger 97]
(No precise derivation of shape)

p(E) ,

Egap E-E,



Answer 1: Einstein Gravity

[lliesiu GJT 20]
[Ghosh Maxfield GJT 19]

e No Gap, quantum effects near the horizon become large and modify answer

1 Egap /



Answer 2: Supergravity

[Heydeman, lliesiu, Zhao, GJT 20]

e Emergent, but broken, superconformal symmetry PSU(1,1|2). Precise
derivation of the shape

p(E) 4

eSOT

EgaP Q Q 3




Thermodynamics of Near-Extreme Black Holes

Don N. Page!

CIAR Cosmology Program
Department of Physics
Unaversity of Alberta
Edmonton, Alberta
Canada T6G 2J1

Abstract

The thermodynamics of nearly-extreme charged black holes depends upon the number
of ground states at fixed large charge and upon the distribution of excited energy
states. Here three possibilities are examined: (1) Ground state highly degenerate
(as suggested by the large semiclassical Hawking entropy of an extreme Reissner-
Nordstrom black hole), excited states not. (2) All energy levels highly degenerate,
with macroscopic energy gaps between them. (3) All states nondegenerate (or with
low degeneracy), separated by exponentially tiny energy gaps. I suggest that in our
world with broken supersymmetry, this last possibility seems most plausible. An
experiment is proposed to distinguish between these possibilities, but it would take a
time that is here calculated to be more than about 10%°7 years.

[Page 00]



Einstein Gravity
Case 1: 3D Rotating BTZ



3D gravity and BTZ

e Consider 3D Einstein gravity (possibly coupled to matter)

1
Ipg = — d’ R3 + —
BH 167TGN/ ng?’( 3+£§>

* We will be interested in the rotating BTZ black hole solution near extremality with
mass £ and angular momentum J

dr? r_r 2
2 2 , 4 | 2 T4
ds® = —f(r)dt” + ) +r (dgp ;s dt)

e Extremality bound: E > | J|




The near extremal limit

* We will focus on states with angular momentum, at very low T. This implies that

"y

7Z'Z/ﬂ3

_r_
T ~

=0 E—|J| >0  r-~ry~rn

e The metric in the throat is approximately AdS, X S!in terms of

2

2
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I |
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+ 1y | do —dt + " p2rldt
I |

v Background U(1) gauge field
w 27Tty
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r=— + P
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Semiclassical thermodynamics

* The extremal energy and Bekenstein-Hawking entropy are

c|J/|

* Thermodynamics at low temperatures

E=E,+2n°®T% S=S8,+4n°® T

 This will be the universal behavior, with a model dependent parameter @, that in this
case is

O =—



Dimensional reduction In throat

* In the gravitational path integral only some modes become relevant at low T

Dilaton

|

ds® = ds5p, + ®*(dp + A)?

|

2D metric in (¢, 1) U(1)vfield

 Dimensional reduction of 3D Einstein action gives the Achucarro-Ortiz action

1 1 2
I=—— | Jgo® | Ry — —P%F? 1+ —
SGN/ 92 ( 274 +€§)




NHR: Two simplifications

- After integrating out the gauge field (with fixed charge boundary condition) we get a
2D dilaton-gravity theory

_ CL8GNI)? 2
I, = SGN/\/_ @OR—UN®),  U)(®) = 5 — 2




NHR: Two simplifications

- After integrating out the gauge field (with fixed charge boundary condition) we get a
2D dilaton-gravity theory

- 1(8GyJ)? 2
I, = SGN/\/_ @OR—UN®),  U)(®) = 5 — 2

- In the near horizon region ® ~ ®, and the EOM is U(®,) = 0, determines extremal
size. Expand for small fluctuations ® = ®, + 4Gy ¢

1 2 2D clJ|
:_SOX__/\@¢ R+ 5 ="6, =7\ %
2 & N

e Controls breaking of emergent conformal symmetry SL(2,R) in throat



Near-extremal limit

* Final answer for gravitational path integral near extremality

Zprz|B8, J] = e PEoe /Dgp¢ o—Lirl9,]

(A) nAdS, x S

I ‘

(B) ext. BTZ

[Moitra Sake Trivedi Vishal 19]
[Nayak Shukla Soni Trivedi Vishal 18]



Near-extremal limit

* Final answer for gravitational path integral near extremality

Zprz|B8, J] = e PEoe /Dgp¢ o—Lirl9,]

- Boundary conditions at the throat (from gluing with outside)

(A) nAdS, x S

_li fzﬁ f \
¢|a_824’ Lla—T, e—0 00 ‘

@ : Renormalized dilaton ' ,

(B) ext. BTZ



Near-extremal limit

* Final answer for gravitational path integral near extremality

Zprz|B8, J] = e PEoe /Dgp¢ o—Lirl9,]

- Boundary conditions at the throat (from gluing with outside)

_1lc 2/ |
¢|a—8249 Lla—T, 8—)0 00 ‘

(A) nAdS, x S
|

@, : Renormalized dilaton ——
- Contributions from KK modes are easy: interactions are suppressed and they give
temperature independent corrections (shift S, and E))

[Sen]
I — (I)0]2D matter, KK modes



Jackiw-Teitelboim (JT) gravity

e |ntegrating out the (linear) dilaton first, the theory reduces to a boundary mode on
rigid AdS2 [Almheiri, Polchinski] [Jensen] [Maldacena,Stanford,Yang] [Englesoy, Mertens Verlinde]...

p
Lir=®, J dr if,7} fz+p) =f(1)

0

- This mode controls finite-temperature effects, breaks the emergent SL(2,R)
symmetry

* This theory can be quantized exactly to obtain the disk partition function
[Altland, Bagrets, Kamenev] [Stanford Witten] [Mertens GJT Verlinde]

D2 20
ZJT(:Ba J) ~ e /
/2253

e This theory is equivalent to an SL(2,R) BF theory



A check: Pure 3D gravity

* The exact result in 3D pure gravity including perturbative quantum effects was
computed by Maloney and Witten:

Zirs = xa(~1/7)xa (1/7) ()= 19

* We can take a near extremal approximation of this formula, gives

172 S _BE 272D, C
Zpt7(P,J) ~ L oo PEt O =—

\ 2732 T24

* This is precisely the answer we expected from the reduction to JT gravity!



Near-Extremal Spectrum

e Since the reduction to JT is valid beyond pure gravity, we have a universal spectrum
near extremality

4
4
4
p ~ ST /® E

€SO

p)E) =

—— sinh <2ﬂ\/2CI>r(E - EO)>
T

|

e According to [Preskill et al 91] the statistical mechanical description of NEBH was

supposed to break down at £ ~ 1/®_, and it was believed to be a gap in their
spectrum.

* Instead, there is no gap. A gravitational mode becomes strongly coupled and the
density of states goes smoothly to zero



Near-Extremal Spectrum

e Since the reduction to JT is valid beyond pure gravity, we have a universal spectrum
near extremality

p)E) =

€S0

212

sinh (2ﬂ\/2CI>r(E - EO))

4
4
'l
p ~ ST /® E

* Important that this effects break conformal invariance. If unbroken it would imply

(E) = ASE) + 2
A E

[Jensen et al 11]



Near-Extremal Spectrum

e Since the reduction to JT is valid beyond pure gravity, we have a universal spectrum
near extremality

p)E) =

€S0

212

sinh (2ﬂ\/2CI>r(E - EO))

4
4
'l
p ~ ST /® E

* Important that this effects break conformal invariance. If unbroken it would imply

p(E) = Ad(E

[Jensen et al 11]



Universal sector in 2D CFT

 Universal gravitational sector in AdS; when looking at near extremal states. Is there a
universal sector of 2D CFTs?

AdS,

AdS, x S!

Horizon



Universal sector in 2D CFT

 Universal gravitational sector in AdS; when looking at near extremal states. Is there a
universal sector of 2D CFTs?

v Yes! Only assumptions: twist gap, large ¢ and modular invariance
[Ghosh, Maxfield, GJT 19]

e 2D CFT description of the states:

C
- If we fix angular velocity: f; ~ 20 P~ 2m TU

Z ~ yy (= 1)y (=1/%) + ...

- Similar phenomena with correlators



Pure 3D gravity

e Including only BTZ and the SL(2,Z7) black hole gives non-unitary partition
function. Other interesting configurations in near-extremal limit are:

BTZ SL(2,7) BH
\ /

|

Maloney-Witten

[Benjamin et al 19]




Pure 3D gravity

e Including only BTZ and the SL(2,Z7) black hole gives non-unitary partition
function. Other interesting configurations in near-extremal limit are:

BTZ SL(2,Z) BH i - —

l New contributions

Maloney-Witten (Seifert topology)

[Benjamin et al 19] [Maxfield, GJT 20]




Einstein Gravity
Case 2: 4D Charged BH



Charged Black Hole in AdS,

. §) 1
e 4D action: [:_/(RJFE)_E/FzJFIde

. AdS RNBH | i
. 2 2 2 : :
(metric)  as = far2 + U 4 p2a02, po1- My Q2 + | |
f r r L2 ! '

(gauge field) A=in(1—"2)dr  p= e

4 Th
e Large BH in AdS e “Gap” scale i i
2 7’61 7“8 3/2 O =r.L i i
QNﬁy EONﬁNQ , So~Q>1 r =10 l I




Charged Black Hole in AdS,

NHR / FAR

Horizon
e Throat (NHR) AdSs x S?
L2 ~ [, RS2 =T

e Matching surface: 1
Te —To g > LQ



Massless Sector atlow T

e Reduction to 2D: we only want to keep massless modes

(metric) dsip = Zirzdsip + @ hin,) (dy™ + BE) (dy" + B'E)

SO(3) gauge field / \

Killing vectors of sphere

(gauge field)  A,(z,y) = au(x) < U(1) gauge field

e Action: 1

1
Iop = /(ch —2U(®)) — ” PO/2H? _ o P3/2 f2

U(x) =ro [—ﬁcb/ —m]



Effective 2D theory

e 2D Yang Mills: easy to integrate out fields (all Dirichlet)

7 =3 (2j +1)%enE / DEDg e (PR-2Ua.i(®)

7,Q

Q2

3j(j +1)

* Charge dependent dilaton potential: 7, ;(x) = o [@3/2

PH5/2



Effective 2D theory

e 2D Yang Mills: easy to integrate out fields (all Dirichlet)

7 =3 (2j +1)%enE / DEDg e (PR-2Ua.i(®)

7,Q

* Charge dependent dilaton potential: 7, ;(x) = o [

 NHR: Linear dilaton approximation & = &, + ¢

Q> 3j(G+1) 3

PH3/2 T PH5/2 1.2

1
Uqg,j(®o=10) =0, = U(q’o+¢)%—ﬁ¢
2

ZJT — /quDge

JNHR qb(R_l_Ll%)_l_Ide

Ligay = B—



Partition Function

/

NHR FAR

N

NHR: Constant Dilaton

T

Z =Y (2j+1) 1T BB S0 711, B
7.Q L

v
FAR: Classical fluctuations

\ 4
NHR: Linear Dilaton / JT



Partition Function: Corrections

/

NHR FAR

N

* Heavy charged matter and KK modes log Z = B6Eg + 6Sp + O(e)

e Interactions: suppressed in 1y and ¢ (Log corrections 6.5) ~ log Lo )

« Non-linear dilaton corrections: supp. in ryand T

e Non-perturbative: exponentially suppressed in

= To do: Add light charged matter (incorporate instability)



Statistical Mechanics

e The 2D gauge modes are frozen when we fix charges. In a sector of fixed 0

and J the spectrum is again:
SO

po.AE) =5 sinh (27:\/2@,,(12 = E0)>

2



Statistical Mechanics

e The 2D gauge modes are frozen when we fix charges. In a sector of fixed 0

and J the spectrum is again:
SO

po.AE) =5 sinh (27z\/2(I>,,(E = E0)>

2

- Fixed chemical potential and =0

e, .
2 K = o |70 (compressibility)
7 = 207 PE0 730(Qo) Z e?mea=Pixk 7
oS .
0+q i £=3 3 I (electric field)
[Sen]
[Sachdev 19]

- Fixed charge and boundary metric (zero angular velocity)

_Bj(j—i—l)

Z = Z50(Qo) Y (2 +1)%e 78

J



Black Hole Spectrum for Fixed
Charges

e No Gap, quantum effects become large. Answer for non-SUSY theories

p(E) 4

1/®,



Supergravity



4D ./ = 2 Supergravity (A = 0)

e Fields: Metric G5, doublet of gravitinos ‘wa and U(1) gauge field A,

. j 1
e Lagrangian: E 'L =k"7 (§R—\IJIMFMNPDN\IJ§D—ZFMNFMN
872Gy = K*

el _ur

+2\—@\I!I (Fun+i *FMNF5)\IJ]}7+4 gravitino) ,

: 1
e Local SUSY transformations: 6.E3 = §—IFA\IJMI + h.c.,

1

5€AM — ﬁgl']E[\IfMJ -+ h.c. ,
1 1
56\111 — (O - ABF I_—FABF T 1J .
v = ( M+4wM AB)E NG ABL ME "€y

e |n this theory, the Reissner-Nordstrom black hole is still a solution



4D ./ = 2 Supergravity

Far Region: Flat Minkowski
SUSY Vacuum of =2 SUGRA
with IS0 (3,1|2)

Interpolating: Extreme RN
%-BPS Soliton

Near Region: AdS, X S?
SUSY Vacuum of N'=2 SUGRA with
PSU(1,1]|2) Symmetry

Horizon:
Moves to infinite distance
as we approach extremality

PSU(1,1|2) D SL(2,R) X SU(2)



4D ./ = 2 Supergravity

Far Region: Flat Minkowski
SUSY Vacuum of =2 SUGRA
with IS0 (3,1|2)

Interpolating: Extreme RN
%-BPS Soliton

Near Region: AdS, X S?
SUSY Vacuum of N'=2 SUGRA with
PSU(1,1]|2) Symmetry

Horizon:
Moves to infinite distance
as we approach extremality

This symmetry comes from the S? (NOT the
outer SU(2) which is usually broken)



4D ./ = 2 Supergravity

Far Region: Flat Minkowski
SUSY Vacuum of =2 SUGRA
with IS0 (3,1|2)

Interpolating: Extreme RN
%-BPS Soliton

Near Region: AdS, X S?
SUSY Vacuum of N'=2 SUGRA with
PSU(1,1]|2) Symmetry

Horizon:
Moves to infinite distance
as we approach extremality

Near extremal spectrum comes from mode
that breaks this symmetry



Dimensional Reduction

* The emergent, broken, symmetry in the throat is now PSU(1,1|2), new fermionic
modes from gravitino become relevant at low T \jicheison, Spradiin 99]



Dimensional Reduction

* The emergent, broken, symmetry in the throat is now PSU(1,1|2), new fermionic
modes from gravitino become relevant at low T \jicheison, Spradiin 99]

* The reduction of the higher dimensional supergravity theory in the throat is

N = 4 supersymmetric JT gravity. This can be rewritten as a psu(1,1|2)

BF theory: [Heydeman, lliesiu, Zhao, GJT 20]

- Where A is a psu(1,1|2) gauge field and ¢ is a zero-form in the adjoint of p3u(1,1|2)



Dimensional Reduction

* The emergent, broken, symmetry in the throat is now PSU(1,1|2), new fermionic
modes from gravitino become relevant at low T \jicheison, Spradiin 99]

* The reduction of the higher dimensional supergravity theory in the throat is

N = 4 supersymmetric JT gravity. This can be rewritten as a psu(1,1|2)

BF theory: [Heydeman, lliesiu, Zhao, GJT 20]

- Where A is a psu(1,1|2) gauge field and ¢ is a zero-form in the adjoint of p3u(1,1|2)

e Boundary conditions to glue to far-away region: §(2i®, A, (1) + &(7))|om = 0

[BF,bdy. = %/ Str QbA = (I)r/ dt Str A72_
oM oM



Dimensional Reduction

* The emergent, broken, symmetry in the throat is now PSU(1,1|2), new fermionic
modes from gravitino become relevant at low T \jicheison, Spradiin 99]

* The reduction of the higher dimensional supergravity theory in the throat is

N = 4 supersymmetric JT gravity. This can be rewritten as a psu(1,1|2)
BF theory:

[Heydeman, lliesiu, Zhao, GJT 20]

- Where A is a psu(1,1|2) gauge field and ¢ is a zero-form in the adjoint of p3u(1,1|2)
* Boundary conditions to glue to far-away region: §(2i®, A, (1) + &(7))|om = 0
[BF,bdy. = 3/ Str QbA = (I)r/ dt Str A72_
2 Jom

GMl

N = 4 Schwarzian Theory



/N = 4 Schwarzian Theory

e Parametrization of the //* = 4 superline Z = (z, 6, éb). The
supercovariant derivatives are

0 1 _ 0 1
— _ea T D" = — —6° T
594 + 5 0, + 5 9)

D,
00,

e Super-reparametrization: r — 7/(1,0,0), 6% — 0'%(1,0,0), 6, — 6,(1,0,0),

Satisfy the constrains [Matsuda Uematsu] [Schoutens]

D.,6,=0 , D%"=o,

e

1 _ _ o
D, — 5(Dae’b)eg =0 , D% — (D)8’ =0

()



/' = 4 Schwarzian Theory

o We can parametrize the super-reparametrizations Diff (S ”4) by the
following functions:

f(r) € Diff(SY), g(r) € SU2), n*(r), (7).

* A finite reparam with all parameters turned on looks very complicated. A
special subset are PSU(1,1 | 2) transformations. For example the bosonic

subgroup SL(2,R) X SU(2) is

at + b c ~ 9
; — 06
" cT +d 4(07'—|—d)3( )"
oo 1
/2 N it-o a(gb _ 7
L co(t — 300) +d
_ _ s 1
Bs — Ople’t _



/N = 4 Schwarzian Theory

e The N=4 Schwarzian derivative was defined by Matsuda and Uematsu

| 1 o
S'(Z;7") = —éDaleog (%(Daﬁ’b)(Daé’go .

e The Schwarzian action corresponds to one component of this field
[Heydeman, lliesiu, Zhao, GJT 20]

Loy = o, / drSyf(r), g(r), (7]

e More Explicitly:

&)
In—y = —CIDT/ dr [Sch(f,7) + Tr(¢9~'9-9)° + (fermions)]
0

| |

v v
Bosonic Particle moving
Schwarzian on SU(2)




Summary of Steps

4D N = 2 supergravity

Fixed U(1) charge, Look at throat
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1D Boundary mode <+—— /' = 4 Super-Schwarzian



Summary of Steps

AD N = 2 supergravity

Fixed U(1) charge, Look at throat

\4

2D N = 4 Super-JT «<— PSU(1,1|2) BF theory

Integrate out dilaton

\4

1D Boundary mode <+—— /' = 4 Super-Schwarzian

l

Spectrum as function of energy and spin



/' = 4 Schwarzian Theory

e The spectrum of this two-dimensional black hole is extracted from the
partition function:

D fDgDnDn
Z(5704) — P{;Uiqup;} eXp (cbr/dTSb[faganaﬁ]) )

e Boundary conditions:

3

f(r+8)=f(r), glr+8)= e%ngg(ﬂ, n(r+ ) = > (7).
l SU(2) chemical potential
Inverse Temperature (Angular Velocity)

2o = if€2



/' = 4 Schwarzian Theory

e The partition function can be computed exactly using localization
[Stanford Witten] or canonical methods [Mertens GJT Verlinde]. The
answer Is:

SU(2) mode 1-loop Classical Action

T 1

7 — 50 Z @2/2 @7?3/2 n—+a g cos®(ma) 62”2%(1—4(7&@)2)
33/2 33/2 sin (27 «) P4 (1 —4(n+ «)?)?

" |

Schwarzian 1-loop Fermion 1-loop

e Also obtained from a limit of ./ = 4 Virasoro characters of Eguchi and
Taormina



N = 4 Spectrum

e The PSU(1,1|2) symmetry is broken, as much as the conformal
symmetry in the bosonic case. There is a global super-translation group

which survives with four supercharges. This organizes spectrum is
supermultiplets

ZXJ ) Pext (J / dE e (x1/2(@) + 2x0(@)) peont(1/2, E)
—I—Z/dE €_BE (XJ( )—I—QXJ 1( )—|—XJ 1( )) pcont(JvE)v

J>1 l

SU(2) characters

XJ(Qf) = Z?{IZ_J 647m’am _ sin(2.J+1)27mé

sin 27w




N = 4 Spectrum

e The PSU(1,1|2) symmetry is broken, as much as the conformal
symmetry in the bosonic case. There is a global super-translation group

which survives with four supercharges. This organizes spectrum is
supermultiplets

ZXJ ) Pext (J / dE e (x1/2(@) + 2x0(@)) peont(1/2, E)
—I—Z/dE Q_BE (XJ( )—I—QXJ 1( )—|—XJ 1( )) pcont(JvE)v

J>1

Non-zero index: - £ = 0: Supermultiplet (/)
Zero index: - E # 0: Supermultiplet 1/2 = (1/2) & 2(0)

Supermultiplet J =) 2(J—-1/2) (J—-1)



N = 4 Spectrum

e Density of states at fixed SU(2) charge J, where Ey(J) = J 2/ 20,

pext(J) — eSO(SJ,O-

ed0 J . 1
pen (. B) = g sinh (20V/22,(B — Ey(7))) (B — Ey())). for J > 5,
p(E) \ p(E)
50 50
A A
0 1/2 1
| | > , i >
Egap  Ep(1) i) Egap  Ep(1) i)

Figure 3: Left: Density of supermultiplets labeled by the highest spin J. We show 0, which is
simply a delta function at £ = 0; 1/2 which is continuous but starts at Eg,p, = Ep(1/2); and 1
which is also continuous starting at Ey(1). Right: Degeneracy for all states with J = 0. These
come from O, the delta function at £ = 0, 1/2,starting at Eg,p, and 1, starting at Ep(1). All
other supermultiplets do not have a J = 0 component.



e
i > , .
~1/®, L Egap = ﬁ E
(a) Einstein gravity, J =0 (b) SUGRA, J =0
p(E), p(E),
€SO 65’0
[ > | >
J(J +1)/22, E J2 /28, E
(c) Einstein gravity, J # 0 (d) SUGRA, J #0

Figure 2: Schematic shape of the black hole spectrum at fixed SU(2) charge as a function of
energy above extremality E. We show the semiclassical answer (red dahsed) and the solution
including quantum effects (purple). (a) Answer for Einstein gravity. We see there is no gap at
scale £ ~ 1/®, and the extremal entropy goes to zero. (b) Answer for supergravity (either N’ = 2
in 4D or N' = (4,4) in 3D). We find a gap at the scale Eyq) = ﬁ and a number e”° of extremal
states, consistent with string theory expectations. (c) Einstein gravity spectrum for J # 0. (d)
Supergravity spectrum for J # 0, the jumps indicate contributions from different supermultiplets

J,J+1/2and J+ 1.



(4,4) Supergravity in AdS;

* The gravity sector is described by CS with oLE)

super-group PSU(1,1|2); ® PSU(1,1 |2),
at level k

- The bosonic sector is 3D Einstein gravity
coupled to CS SU(2); ® SU(2)p at level

k, with charges J;, Jp

e Extremal-BPS State: Large momentum P and

SU(2) charges J; # 0, Jp = 0. Near-extremal

states described by same spectrum as before, o(E)
with parameters: n

k :
S =21\ [kP — J} N s
. The gap in the spectrum for Jp = Ois E,, ) = b J312®, B

Q) Jp #0



Gap in the D1-D5 system

 The near-extremal black hole appearing in the D1-D5 system has a
geometry AdS; X S 3 This is described by (4,4) sugra with level

k= 0,05

* The near-extremal spectrum predicts the index matches with the Bekenstein-
Hawking formula and the gap at J, = 0 is given by

e This is controlled by the 2D Virasoro algebra but also has a stringy origin
explained by Maldacena and Susskind.



Conclusions



Conclusions and Open Questions

Extremal Physics + Near-extremal physics

! !

e.g. Sen’s quantum entropy function JT mode, T dependence
Localization

e Black hole spectrum near extremality fixed by pattern of symmetry breaking.
Another important example is SU(1,1 | 1).

e Prediction for behavior of higher-dimensional CFTs at low temperature/large
charge, emergence of “local criticality”. Can we show this using a bootstrap
argument?

e A gravitational calculation of the index?

e Matrix dual to pure /" = 4 Super-JT?

 Another application: Hartle-Hawking wavefunction of a S1 x S? universe
[Maldacena Yang GJT 19]



Extra



BHs with emergent SU(1,1|1)

Examples: Near-BPS black holes in 4D and 5D gauged SUGRA with
negative cosmological constant.

Low-temperature thermodynamics captured by the ./ = 2 Schwarzian
[Fu Gaiotto Maldacena Sachdev]

In—s = O, / Sch(f, ) + 2(d,0)* + (fermions),

Density of states from exact quantization:
[Stanford Witten][Mertens GJT Verlinde]

Zp(a, B) = Z e?mied 6502 COS (ﬁ)
QeZ+%,|Q|<4 q q
o sinh (27r 20 (FE — E )
+ 650 Z (GZWiQQ i e27ria(Q—(j)) / dEe_BE \/ A( O(Q)) |
Eo(Q) 2q 1
QEZA+3 0
where Fy(Q) = %(% — 1y

Besides S, and ®,, also depends on two discrete parameters ge ”Z, v=20,1



BHs with emergent SU(1,1|1)
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Figure 5: Density of supermultiplets as a function of energy F and charge (). Left: Odd ¢ and no
anomaly. The delta function at ' = 0 involves charges in the range |@Q| < 1/2. The supermultiplet
with the lowest gap has Qo = 1/2 +1/(2q) with Egp = Eo(Qo). Other supermultiplets labeled
by @ start at higher energies as shown. Right: Odd g and anomaly. The delta function at £ = 0
involves charges in the range |@Q| < 1/2. The supermultiplet with ) = 1/2 has no gap. Other
supermultiplets have a gap, as shown.

e Q: How to extract the discrete parameters g € Z, v = 0,1 from the higher
dimensional black hole?



