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Plan of the talk

- Motivations: Spectrum of near-extremal black holes


- BTZ black hole in 


- 4D charged black hole 


- Same examples in Supergravity

AdS3

 Einstein Gravity



Motivations, Near Extremal BH



Near-Extremal Black Hole

• Large Charge and Large Extremal Bekenstein-Hawking Entropy/ Large Area


• Low Temperature/ Near-Extremal Limit
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Black Hole Thermo: Issues 

• Bekenstein-Hawking Entropy vs (low) T
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• Energy vs (low) T

• Gap-Scale: Thermodynamical description was thought to break downS = ⇡Q
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Spectrum of near-extremal 
black holes??

• Statistical Description breaks down at low energies?
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Spectrum of near-extremal 
black holes??

• Statistical Description breaks down at low energies?
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• Proposal from microscopic models of BHs: gap
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Spectrum of near-extremal 
black holes??

E − E0

(No precise derivation of shape)



Answer 1: Einstein Gravity

• No Gap, quantum effects near the horizon become large and modify answer
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Answer 2: Supergravity

• Emergent, but broken, superconformal symmetry . Precise 
derivation of the shape

PSU(1,1 |2)
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Thermodynamics of Near-Extreme Black Holes

Don N. Page1

CIAR Cosmology Program
Department of Physics
University of Alberta
Edmonton, Alberta
Canada T6G 2J1

Abstract
The thermodynamics of nearly-extreme charged black holes depends upon the number
of ground states at fixed large charge and upon the distribution of excited energy
states. Here three possibilities are examined: (1) Ground state highly degenerate
(as suggested by the large semiclassical Hawking entropy of an extreme Reissner-
Nordstrom black hole), excited states not. (2) All energy levels highly degenerate,
with macroscopic energy gaps between them. (3) All states nondegenerate (or with
low degeneracy), separated by exponentially tiny energy gaps. I suggest that in our
world with broken supersymmetry, this last possibility seems most plausible. An
experiment is proposed to distinguish between these possibilities, but it would take a
time that is here calculated to be more than about 10837 years.

1 Introduction

What are the energy levels of a charged black hole? For fixed electric charge Q ! 1, the minimum mass
of a classical electrically charged black hole (given by the Kerr-Newman metric, or, in the nonrotating
case, by the Reissner-Nordstrom metric) is M = Q. In this paper, we shall examine the consequences of
various assumption for the levels of the excess energy

E ≡ M −Q. (1)

(Strictly speaking, vacuum polarization is likely to shift the minimum mass for fixed charge Q slightly
away from Q if the theory does not have unbroken supersymmetry, in which case in Eq. (1), and in many
equations below, one should replace Q by the minimum for the mass M for the fixed charge. However,
for simplicity I shall here and henceforth simply call this minimum mass Q.)

At E = 0, one has (classically) an extreme-charged Reissner-Nordstrom black hole with event horizon
radius r+ = M = Q and hence Bekenstein-Hawking entropy (using Planck units throughout, h̄ = c =
G = k = 4πε0 = 1)

S0 ≡ SH(E = 0) = A/4 = πQ2 ! 1. (2)

This formula for the entropy of an extreme black hole is also supported by D-brane calculations for black
holes in superstring theory with unbroken supersymmetry. It suggests that the ground state of a black
hole with large fixed charge is highly degenerate. On the other hand, there have been counter-arguments
[1, 2] suggesting that the entropy of an extreme black hole is zero. Which idea is correct?

There seem to be three extreme possibilities in our world with broken supersymmetry, though of course
intermediate possibilities also exist: (1) Ground state highly degenerate, excited states not. (2) All states
highly degenerate, with macroscopic mass gaps. (3) All states nondegenerate, separately microscopically.
Here I wish to examine some of the thermodynamic consequences of these possibilities.

1E-mail:don@phys.ualberta.ca
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Einstein Gravity 

Case 1: 3D Rotating BTZ



3D gravity and BTZ
• Consider 3D Einstein gravity (possibly coupled to matter)

• We will be interested in the rotating BTZ black hole solution near extremality with 
mass  and angular momentum E J

� (1)

Egap = 1/(8�) (2)

⇢J(E) ⇠ eS0

sinh

⇣
2⇡

p
2�(E � J2/2�)

⌘

�E2
(3)

⇢J(E) =

8
>><

>>:

eS0�(E � E0) (J = 0)

eS0

sinh
⇣
2⇡
p

2�(E�E0)�J2

⌘

�E2 ⇥(E � J2/2�) (J > 0)

(4)

e(1�2g)S0

Z
bdbZtrumpet(b,�)Vg,n(b) (5)

IEH = � 1

16⇡GN

Z
d3x

p
g3

✓
R3 +

2

`23

◆
(6)

I = � 1

8GN

Z p
g2�

✓
R2 �

1

4
�
2F 2

+
2

`2

◆
(7)

hZ(�1)Z(�2)i 6= hZ(�1)ihZ(�2)i (8)

Z(L)
(�) =

�L

L!

p
⇡2(L� 1)�(L� 3/2) exp⇡2

(1� L(1� ↵))2/� (9)

⇢(L)(E) =
�L

L!

r
⇡

2

✓
2⇡(1� L(1� ↵))p

E

◆L�1/2

IL�1/2

h
2⇡(1� L(1� ↵))

p
E
i

(10)

⇢JT(E) =
eS0

4⇡2
sinh

⇣
2⇡

p
2�E

⌘
(11)

⇢p(E) =
1

4⇡2
sinh

✓
p

2
cosh

�1

✓
1 +

8⇡2

p2
E

◆◆
(12)

p
uJT
2⇡

I1 (2⇡
p
uJT) = x (13)

hZ(�1)Z(�2)ig=0 =

p
�1�2

2⇡(�1 + �2)
e�u(x)(�1+�2)

���
x=0

(14)

hZ(�1) · · ·Z(�n)ig=0 =
e(2�n)S0

2⇡n/2

p
�1 · · ·�n

�1 + . . .+ �n

✓
@

@x

◆n�2

e�u(x)(�1+...+�n)
���
x=0

(15)

1

� (1)

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2

⇣
d'� r�r+

r2
dt
⌘2

(2)

f(r) =
(r2 � r2+)(r

2 � r2�)

r2
(3)

Egap = 1/(8�) (4)

⇢J(E) ⇠ eS0

sinh

⇣
2⇡

p
2�(E � J2/2�)

⌘

�E2
(5)

⇢J(E) =

8
>><

>>:

eS0�(E � E0) (J = 0)

eS0

sinh
⇣
2⇡
p

2�(E�E0)�J2

⌘

�E2 ⇥(E � J2/2�) (J > 0)

(6)

e(1�2g)S0

Z
bdbZtrumpet(b,�)Vg,n(b) (7)

IEH = � 1

16⇡GN

Z
d3x

p
g3

✓
R3 +

2

`23

◆
(8)

I = � 1

8GN

Z p
g2�

✓
R2 �

1

4
�
2F 2

+
2

`2

◆
(9)

hZ(�1)Z(�2)i 6= hZ(�1)ihZ(�2)i (10)

Z(L)
(�) =

�L

L!

p
⇡2(L� 1)�(L� 3/2) exp⇡2

(1� L(1� ↵))2/� (11)

⇢(L)(E) =
�L

L!

r
⇡

2

✓
2⇡(1� L(1� ↵))p

E

◆L�1/2

IL�1/2

h
2⇡(1� L(1� ↵))

p
E
i

(12)

⇢JT(E) =
eS0

4⇡2
sinh

⇣
2⇡

p
2�E

⌘
(13)

⇢p(E) =
1

4⇡2
sinh

✓
p

2
cosh

�1

✓
1 +

8⇡2

p2
E

◆◆
(14)

p
uJT
2⇡

I1 (2⇡
p
uJT) = x (15)

1

� (1)

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2

⇣
d'� r�r+

r2
dt
⌘2

(2)

f(r) =
(r2 � r2+)(r

2 � r2�)

r2
(3)

Egap = 1/(8�) (4)

⇢J(E) ⇠ eS0

sinh

⇣
2⇡

p
2�(E � J2/2�)

⌘

�E2
(5)

⇢J(E) =

8
>><

>>:

eS0�(E � E0) (J = 0)

eS0

sinh
⇣
2⇡
p

2�(E�E0)�J2

⌘

�E2 ⇥(E � J2/2�) (J > 0)

(6)

e(1�2g)S0

Z
bdbZtrumpet(b,�)Vg,n(b) (7)

IEH = � 1

16⇡GN

Z
d3x

p
g3

✓
R3 +

2

`23

◆
(8)

I = � 1

8GN

Z p
g2�

✓
R2 �

1

4
�
2F 2

+
2

`2

◆
(9)

hZ(�1)Z(�2)i 6= hZ(�1)ihZ(�2)i (10)

Z(L)
(�) =

�L

L!

p
⇡2(L� 1)�(L� 3/2) exp⇡2

(1� L(1� ↵))2/� (11)

⇢(L)(E) =
�L

L!

r
⇡

2

✓
2⇡(1� L(1� ↵))p

E

◆L�1/2

IL�1/2

h
2⇡(1� L(1� ↵))

p
E
i

(12)

⇢JT(E) =
eS0

4⇡2
sinh

⇣
2⇡

p
2�E

⌘
(13)

⇢p(E) =
1

4⇡2
sinh

✓
p

2
cosh

�1

✓
1 +

8⇡2

p2
E

◆◆
(14)

p
uJT
2⇡

I1 (2⇡
p
uJT) = x (15)

1

The	BTZ	Black	Hole
• BTZ	black	hole	solution:
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• Mass	and	angular	momentum
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• Extremality bound: E ≥ |J |



The near extremal limit

• The metric in the throat is approximately  in terms of AdS2 × S1

 with radius AdS2 ℓ2 = ℓ3/2
Background U(1) gauge field

• We will focus on states with angular momentum, at very low T. This implies that 
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Semiclassical thermodynamics

• The extremal energy and Bekenstein-Hawking entropy are 

E0 = |J | , S0 = 2π
c |J |

6

• Thermodynamics at low temperatures

E = E0 + 2π2ΦrT2, S = S0 + 4π2ΦrT

• This will be the universal behavior, with a model dependent parameter , that in this 
case is

Φr

Φr =
c

24



Dimensional reduction in throat
• In the gravitational path integral only some modes become relevant at low T

4 Part 3: Application to 3D gravity and 2D CFT

4.1 An invitation: The BTZ black hole
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2D metric in (t, r)

Dilaton

U(1) field

• Dimensional reduction of 3D Einstein action gives the Achucarro-Ortiz action
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NHR: Two simplifications
- After integrating out the gauge field (with fixed charge boundary condition) we get a 

2D dilaton-gravity theory
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- In the near horizon region  and the EOM is , determines extremal 
size. Expand for small fluctuations 
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• Controls breaking of emergent conformal symmetry  in throatSL(2,ℝ)
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Near-extremal limit
• Final answer for gravitational path integral near extremality
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Figure 5: The near extremal BTZ geometry at fixed time, from the horizon (leftmost circle) to the
asymptotically AdS3 boundary (rightmost circle @3). In region (A) the geometry is approximately
nearly AdS2 ⇥ S1 (described by JT gravity), and in (B) the geometry is approximately extremal
BTZ and the physics is classical. In the overlap between (A) and (B), we introduce the boundary
@2 (the blue line) where the Schwarzian mode lives.

This Schwarzian theory will give a good description of the physics in the region where
corrections to the AdS2 fibration (4.107) are small. This is true as long as r � r+ ⌧ r+,
corresponding to ⇢ ⌧

r+
`3T

, which is the region (A) illustrated in figure 5. In another region,
labeled by (B) in figure 5, quantum fluctuations are suppressed, and we can accurately
describe the physics classically, on a fixed background, which is approximately extremal
BTZ. This is the region ⇢ � 1, corresponding to r � r+ � `3T . The two regions (A),
where JT gravity is useful, and (B), where the geometry is classical, have a parametrically
large region of overlap. Somewhere in this region, we can place an artificial boundary @2
of the AdS2 region. The physics inside this boundary will be described by JT gravity,
which induces a Schwarzian theory living on @2. This will be matched to the asymptotic
boundary @3 of AdS3, where the dual CFT lives, by the classical physics between @2 and
@3.

4.2 A two-dimensional theory

To describe the dynamics in the AdS2 throat described above, we first analyze the two-
dimensional theory arising on dimensional reduction of three-dimensional gravity.
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• Final answer for gravitational path integral near extremality

- Boundary conditions at the throat (from gluing with outside)
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Figure 5: The near extremal BTZ geometry at fixed time, from the horizon (leftmost circle) to the
asymptotically AdS3 boundary (rightmost circle @3). In region (A) the geometry is approximately
nearly AdS2 ⇥ S1 (described by JT gravity), and in (B) the geometry is approximately extremal
BTZ and the physics is classical. In the overlap between (A) and (B), we introduce the boundary
@2 (the blue line) where the Schwarzian mode lives.

This Schwarzian theory will give a good description of the physics in the region where
corrections to the AdS2 fibration (4.107) are small. This is true as long as r � r+ ⌧ r+,
corresponding to ⇢ ⌧

r+
`3T

, which is the region (A) illustrated in figure 5. In another region,
labeled by (B) in figure 5, quantum fluctuations are suppressed, and we can accurately
describe the physics classically, on a fixed background, which is approximately extremal
BTZ. This is the region ⇢ � 1, corresponding to r � r+ � `3T . The two regions (A),
where JT gravity is useful, and (B), where the geometry is classical, have a parametrically
large region of overlap. Somewhere in this region, we can place an artificial boundary @2
of the AdS2 region. The physics inside this boundary will be described by JT gravity,
which induces a Schwarzian theory living on @2. This will be matched to the asymptotic
boundary @3 of AdS3, where the dual CFT lives, by the classical physics between @2 and
@3.

4.2 A two-dimensional theory

To describe the dynamics in the AdS2 throat described above, we first analyze the two-
dimensional theory arising on dimensional reduction of three-dimensional gravity.
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- Boundary conditions at the throat (from gluing with outside)
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Figure 5: The near extremal BTZ geometry at fixed time, from the horizon (leftmost circle) to the
asymptotically AdS3 boundary (rightmost circle @3). In region (A) the geometry is approximately
nearly AdS2 ⇥ S1 (described by JT gravity), and in (B) the geometry is approximately extremal
BTZ and the physics is classical. In the overlap between (A) and (B), we introduce the boundary
@2 (the blue line) where the Schwarzian mode lives.

This Schwarzian theory will give a good description of the physics in the region where
corrections to the AdS2 fibration (4.107) are small. This is true as long as r � r+ ⌧ r+,
corresponding to ⇢ ⌧
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, which is the region (A) illustrated in figure 5. In another region,
labeled by (B) in figure 5, quantum fluctuations are suppressed, and we can accurately
describe the physics classically, on a fixed background, which is approximately extremal
BTZ. This is the region ⇢ � 1, corresponding to r � r+ � `3T . The two regions (A),
where JT gravity is useful, and (B), where the geometry is classical, have a parametrically
large region of overlap. Somewhere in this region, we can place an artificial boundary @2
of the AdS2 region. The physics inside this boundary will be described by JT gravity,
which induces a Schwarzian theory living on @2. This will be matched to the asymptotic
boundary @3 of AdS3, where the dual CFT lives, by the classical physics between @2 and
@3.

4.2 A two-dimensional theory

To describe the dynamics in the AdS2 throat described above, we first analyze the two-
dimensional theory arising on dimensional reduction of three-dimensional gravity.
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Jackiw-Teitelboim (JT) gravity
• Integrating out the (linear) dilaton first, the theory reduces to a boundary mode on 

rigid AdS2 

• This theory can be quantized exactly to obtain the disk partition function
[Altland, Bagrets, Kamenev] [Stanford Witten] [Mertens GJT Verlinde]

[Almheiri, Polchinski] [Jensen] [Maldacena,Stanford,Yang] [Englesoy, Mertens Verlinde]…
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- This mode controls finite-temperature effects, breaks the emergent  
symmetry 

SL(2,ℝ)

• This theory is equivalent to an  BF theory SL(2,ℝ)



A check: Pure 3D gravity

• The exact result in 3D pure gravity including perturbative quantum effects was 
computed by Maloney and Witten: 
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• We can take a near extremal approximation of this formula, gives

• This is precisely the answer we expected from the reduction to JT gravity!
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Near-Extremal Spectrum
• Since the reduction to JT is valid beyond pure gravity, we have a universal spectrum 

near extremality
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Universal sector in 2D CFT

• Universal gravitational sector in  when looking at near extremal states. Is there a 
universal sector of 2D CFTs?

AdS3

Horizon

AdS2 × S1

AdS3



Universal sector in 2D CFT

• Universal gravitational sector in  when looking at near extremal states. Is there a 
universal sector of 2D CFTs?

AdS3

✓Yes! Only assumptions: twist gap, large c and modular invariance
[Ghosh, Maxfield, GJT 19]

βL ∼ 2β βR ∼ 2π
c

24J

• 2D CFT description of the states:

- If we fix angular velocity:

Z ≈ χ1(−1/τ)χ1(−1/τ̄) + …

- Similar phenomena with correlators



Pure 3D gravity
• Including only BTZ and the  black hole gives non-unitary partition 

function. Other interesting configurations in near-extremal limit are:
SL(2,ℤ)

+

Maloney-Witten

BTZ  BHSL(2,ℤ)

E

ρJ(E)

[Benjamin et al 19]



Pure 3D gravity
• Including only BTZ and the  black hole gives non-unitary partition 

function. Other interesting configurations in near-extremal limit are:
SL(2,ℤ)

+ + + …

Maloney-Witten

New contributions 
(Seifert topology)

BTZ  BHSL(2,ℤ)

[Maxfield, GJT 20]

E
E

ρJ(E)
ρJ(E)

[Benjamin et al 19]
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Einstein Gravity 

Case 2: 4D Charged BH



Charged Black Hole in AdS4

• 4D action:

The	BTZ	Black	Hole
• BTZ	black	hole	solution:

⇢(E) = A�(E) +
B

E
(190)

AdS5 ⇥ S
5

(191)

N = 4 SYM (192)

ds
2
= �fdt

2
+

dr
2

f
+ r

2
(d'�A)

2
(193)

f =
(r

2 � r
2
+)(r

2 � r
2
�)

r2
(194)

A =
r+r�

r2
dt (195)

References

14

⇢(E) = A�(E) +
B

E
(190)

AdS5 ⇥ S
5

(191)

N = 4 SYM (192)

ds
2
= �fdt

2
+

dr
2

f
+ r

2
(d'�A)

2
(193)

f =
(r

2 � r
2
+)(r

2 � r
2
�)

r2
(194)

A =
r+r�

r2
dt (195)

References

14

⇢(E) = A�(E) +
B

E
(190)

AdS5 ⇥ S
5

(191)

N = 4 SYM (192)

ds
2
= �fdt

2
+

dr
2

f
+ r

2
(d'�A)

2
(193)

f =
(r

2 � r
2
+)(r

2 � r
2
�)

r2
(194)

A =
r+r�

r2
dt (195)

References

14

• Mass	and	angular	momentum

⇢(E) = A�(E) +
B

E
(190)

AdS5 ⇥ S
5

(191)

N = 4 SYM (192)

ds
2
= �fdt

2
+

dr
2

f
+ r

2
(d'�A)

2
(193)

f =
(r

2 � r
2
+)(r

2 � r
2
�)

r2
(194)

A =
r+r�

r2
dt (195)

M =
r
2
+ + r

2
�

8GN

, J =
r+r�

4GN

(196)

References

14

⇢(E) = A�(E) +
B

E
(190)

AdS5 ⇥ S
5

(191)

N = 4 SYM (192)

ds
2
= �fdt

2
+

dr
2

f
+ r

2
(d'�A)

2
(193)

f =
(r

2 � r
2
+)(r

2 � r
2
�)

r2
(194)

A =
r+r�

r2
dt (195)

M =
r
2
+ + r

2
�

8GN

, J =
r+r�

4GN

(196)

References

14

⇢(E) = A�(E) +
B

E
(190)

AdS5 ⇥ S
5

(191)

N = 4 SYM (192)

ds
2
= �fdt

2
+

dr
2

f
+ r

2
(d'�A)

2
(193)

f =
(r

2 � r
2
+)(r

2 � r
2
�)

r2
(194)

A =
r+r�

r2
dt (195)

M =
r
2
+ + r

2
�

8GN

, J =
r+r�

4GN

(196)

References

14

⇢(E) = A�(E) +
B

E
(190)

AdS5 ⇥ S
5

(191)

N = 4 SYM (192)

ds
2
= �fdt

2
+

dr
2

f
+ r

2
(d'�A)

2
(193)

f =
(r

2 � r
2
+)(r

2 � r
2
�)

r2
(194)

A =
r+r�

r2
dt (195)

M =
r
2
+ + r

2
�

8GN

, J =
r+r�

4GN

(196)

r = 0 (197)

r ! 1 (198)

References

14

⇢(E) = A�(E) +
B

E
(190)

AdS5 ⇥ S
5

(191)

N = 4 SYM (192)

ds
2
= �fdt

2
+

dr
2

f
+ r

2
(d'�A)

2
(193)

f =
(r

2 � r
2
+)(r

2 � r
2
�)

r2
(194)

A =
r+r�

r2
dt (195)

M =
r
2
+ + r

2
�

8GN

, J =
r+r�

4GN

(196)

r = 0 (197)

r ! 1 (198)

References

14

logZ = S0 � �E0 +
T

Egap
+

3

2
log

⇣
T

Egap

⌘
(1)

ESL(2) (2)

I = �
Z
(R+

6

L2
)� 1

e2

Z
F

2
+ IBdy (3)

SB.H. =
Ahorizon

4GN

(4)

⇤KK ⇠ 1/r0 (5)

T (6)

⇢(E) ⇠ e
S0 sinh

✓
2⇡

q
E/Egap

◆
(7)

�0 + � (8)

⇢(E) ⇠ e
S0e

p
E
, ⇢ ⇠ e

S0
p
E (9)

Egap =
24

c
(10)

E = T
2
/Egap (11)

hO(0)O(t)iCFT / hO(0)O(t)iSchw/JT (12)

�IR = h (13)

� = 2h (14)

E = T
2
/Egap +

3

2
T (15)

e
S0 (16)

Tgap (17)

hO(0)O(t)i ⇠ 1/t
3

(18)

S = ⇡Q
2
+ 4⇡

2
Q

3
T (19)

� =
2⇡

�
(20)

E = Q
3
T
2

(21)

Egap ⇠ Tgap ) Egap ⇠ 1

Q3
(22)

⇢(E) (23)

1

• AdS RNBH

• Large BH in AdS

logZ = S0 � �E0 +
T

Egap
+

3

2
log

⇣
T

Egap

⌘
(1)

ESL(2) (2)

ds
2
= fd⌧

2
+

dr
2

f
+ r

2
d⌦

2
, f = 1� 2M

r
+

Q
2

r2
+

r
2

L2
(3)

I = �
Z

(R+
6

L2
)� 1

e2

Z
F

2
+ IBdy (4)

SB.H. =
Ahorizon

4GN

(5)

⇤KK ⇠ 1/r0 (6)

T (7)

⇢(E) ⇠ e
S0 sinh

✓
2⇡

q
E/Egap

◆
(8)

�0 + � (9)

⇢(E) ⇠ e
S0e

p
E
, ⇢ ⇠ e

S0
p
E (10)

Egap =
24

c
(11)

E = T
2
/Egap (12)

hO(0)O(t)iCFT / hO(0)O(t)iSchw/JT (13)

�IR = h (14)

� = 2h (15)

E = T
2
/Egap +

3

2
T (16)

e
S0 (17)

Tgap (18)

hO(0)O(t)i ⇠ 1/t
3

(19)

S = ⇡Q
2
+ 4⇡

2
Q

3
T (20)

� =
2⇡

�
(21)

E = Q
3
T
2

(22)

1

form on S2, while the magnetic solution has F = eQ
4⇡ ✏2.

7 Such black holes have two horizons

r+ and r� located at the zeroes of f(r±) = 0. We will refer to the larger solution as the

actual horizon radius rh = r+. As a function of the charge, the temperature and chemical

potential are given by

� =
4⇡

|f 0(rh)|
, µ =
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Q

rh
. (2.4)

In terms of the chemical potential the vector potential can be written as A = iµ
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such that its holonomy is eµ� along the boundary thermal circle. The Bekenstein-Hawking

entropy for these black holes is given by

S =
A

4GN
=

⇡r2h
GN

. (2.5)

However, as we will see below, if the entropy is defined through the Gibbons-Hawking

procedure instead, the result can be very di↵erent due to large fluctuations in the metric.

To enhance this e↵ects we will consider the regime of low temperatures and large charge

next.

Near-extremal Limits

In the extremal limit, both radii become degenerate and f(r) develops a double zero at

r0 (which can be written in terms of for example the charge). In this casem the extremal

mass, charge and Bekenstein-Hawking entropy are given by
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This is the naive zero temperature extremal black hole. As we will see below, the small

temperature limit of the entropy will not be given by the extremal area S0 but it will still

be a useful parameter to keep track of.

Since the semiclassical description breaks down at su�ciently small temperatures, we

will study near-extremal large black holes with very large � = T�1. We will first review its

semiclassical thermodynamics in this limit. To be concrete, we will do it here by fixing the

charge and the temperature. We will write the horizon radius as rh = r0 + �rh where r0 is

7As we will show shortly, in this units the charge is quantized as Q 2 e · Z.
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Massless Sector at low T
• Reduction to 2D: we only want to keep massless modes 

Killing vectors of sphere SO(3) gauge field

(metric)

(gauge field)

reduction, keeping only massless fields, is

I(2d)EH =�
1

4GN

Z

M2

d2x
p
g[�R� 2U(�)] + 2

Z

@M2

du
p

h�K

�

�
1

12GNr0

Z

M2

d2x
p
g�5/2 Tr(Hµ⌫H

µ⌫) , (2.17)

which has the form of a two dimensional dilaton-gravity theory coupled to SO(3) Yang-Mills

field with dilaton potential and field strength

U(�) = �r0

✓
3�1/2

L2
+

1

�1/2

◆
, (2.18)

We also defined a SO(3) valued field B = Ba
µT

adxµ, with T a antihermitian generators in

the adjoint representation normalized such that [T a, T b] = "abcT c and Tr(T aT b) = �
1
2�

ab,

and field strength H = dB �B ^B. We will see below how in the state corresponding to a

large near-extremal black hole this reduces to Jackiw-Teitelboim gravity [16, 15].

Finally, we can reduce the Maxwell term to the massless s-wave sector. In order to do

this, we decompose the gauge field as [55]8

Aµ(x, y) = aµ(x)
1

p
4⇡

+
X

`�1,m

a(`,m)
µ (x)Y m

` (y), (2.19)

An(x, y) =
X

`�1,m

a(`,m)(x)✏npr
pY m

` (y) +
X

`�1,m

ã(`,m)(x)rnY
m
` (y), (2.20)

where in the first line Y m
` (y) are the scalar spherical harmonics in S2, and in the second line

we wrote the vector spherical harmonics in terms of the scalar ones. This decomposition

shows that the only massless field after reduction is the two dimensional s-wave gauge field

aµ(x). In the second line we see there is no component for An that is constant on S2 (since

such configurations would yield a singular contribution to the action from the poles of S2)

and therefore no other massless field is generated. Therefore the s-wave massless sector of

the Maxwell action becomes

I(2d)M = �
1

4e2r0

Z

M2

d2x
p
g�3/2fµ⌫f

µ⌫ , f = da (2.21)

Putting everything together, the massless sector of the dimensionally reduced Einstein-

8The expansion in (2.19) assumes that no overall magnetic flux is thread through S
2.
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U(1) gauge field
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Effective 2D theory
• 2D Yang Mills: easy to integrate out fields (all Dirichlet) 

• Charge dependent dilaton potential:
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Effective 2D theory
• 2D Yang Mills: easy to integrate out fields (all Dirichlet) 

• Charge dependent dilaton potential:

• NHR: Linear dilaton approximation
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Partition Function

FAR: Classical fluctuations

NHR: Constant Dilaton

NHR: Linear Dilaton / JT

NHR FAR
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Partition Function: Corrections

NHR FAR

• Heavy charged matter and KK modes 

• Interactions: suppressed in  and  r0 ε

• Non-linear dilaton corrections: supp. in  and   r0 T

• Non-perturbative: exponentially suppressed in  S0
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(Log corrections                       )

➡ To do: Add light charged matter (incorporate instability)



Statistical Mechanics

• The 2D gauge modes are frozen when we fix charges. In a sector of fixed  
and   the spectrum is again:

Q
J

ρQ,J(E) =
eS0

2π2
sinh (2π 2Φr(E − E0))



Statistical Mechanics

• The 2D gauge modes are frozen when we fix charges. In a sector of fixed  
and   the spectrum is again:

Q
J

- Fixed chemical potential and j=0
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(compressibility)

(electric field)
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- Fixed charge and boundary metric (zero angular velocity)
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• No Gap, quantum effects become large. Answer for non-SUSY theories
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Supergravity



4D  Supergravity ( )𝒩 = 2 Λ = 0
• Fields: Metric , doublet of gravitinos  and U(1) gauge field GMN ΨI

M AM

• Lagrangian:

BF theory.

We use a mostly plus Lorentzian metric, and will eventually Wick rotate to Euclidean

signature in 2D. We denote 4D curved space indices M,N = 0 . . . 3 and the tangent space

indices A,B = 0, . . . 3. The 4D metric GMN = ⌘ABEA

M
EB

N
is expressed in terms of the vierbein

EA

M
. In 2D, the curved and tangent space indices are respectively µ, ⌫ = 0, 1 and a, b = 0, 1,

and we use the vielbein ea
µ
and dualized spin connection !µ. We will occasionally use indices

for the internal S2 space, which will take values m,n = 2, 3 for the coordinate indices and

a0, b0 = 2, 3 for the frame indices. When we are working in the near-horizon region, with the

AdS2 ⇥S2 product manifold, the vielbein will decompose as:

EA

M
= ea

µ
, ea

0

m
. (4.1)

We will generally suppress spinor indices when possible, but our spinor conventions are given

in Appendix (B).

Pure, ungauged N = 2 supergravity is a minimal theory containing only the graviton,

GMN ; an SU(2)R doublet of gravitinos,  I

M
, I = 1, 2; and a U(1) gauge field AM under which a

black hole solution is electrically or magnetically charged. Without the addition of extra vector

or hypermultiplets, this gravity theory does not have a precise embedding in string theory.24

Nevertheless, we argue that universal features of supersymmetric black holes are already present

in this model, through the relationship with 2D Super-JT gravity.

We write the Lagrangian of pure 4D N = 2 supergravity, following the conventions of [78]:

E�1
L = �2

✓
1

2
R� IM�

MNPDN 
I

P
�
1

4
FMNF

MN+
"IJ

2
p
2
 

M

I
(FMN+i ?FMN�5) 

N

J
+4 gravitino

◆
,

(4.2)

with the standard definitions DM = @M + 1

4
!AB

M
�AB and F = dA. We also write the 4D Newton

constant as 8⇡GN = 2. In the above action and throughout this subsection, we follow the

convention that a spinor ✏I with an upper SU(2)R index has positive chirality, while a lower

index has negative chirality:

�5✏
I = +✏I , �5✏I = �✏I . (4.3)

In analyzing the supersymmetry and dimensional reduction later, we will often instead use

Dirac spinors where the chirality will be implicit.

24As explained in [79], compactification of either Type II theory on a Calabi-Yau threefold will always
produce at least one N = 2 hypermultiplet along with the gravity multiplet discussed here. This follows from
the reduction of the 10D graviton, dilaton, and 2-form.

37

BF theory.

We use a mostly plus Lorentzian metric, and will eventually Wick rotate to Euclidean

signature in 2D. We denote 4D curved space indices M,N = 0 . . . 3 and the tangent space

indices A,B = 0, . . . 3. The 4D metric GMN = ⌘ABEA

M
EB

N
is expressed in terms of the vierbein

EA

M
. In 2D, the curved and tangent space indices are respectively µ, ⌫ = 0, 1 and a, b = 0, 1,

and we use the vielbein ea
µ
and dualized spin connection !µ. We will occasionally use indices

for the internal S2 space, which will take values m,n = 2, 3 for the coordinate indices and

a0, b0 = 2, 3 for the frame indices. When we are working in the near-horizon region, with the

AdS2 ⇥S2 product manifold, the vielbein will decompose as:

EA

M
= ea

µ
, ea

0

m
. (4.1)

We will generally suppress spinor indices when possible, but our spinor conventions are given

in Appendix (B).

Pure, ungauged N = 2 supergravity is a minimal theory containing only the graviton,

GMN ; an SU(2)R doublet of gravitinos,  I

M
, I = 1, 2; and a U(1) gauge field AM under which a

black hole solution is electrically or magnetically charged. Without the addition of extra vector

or hypermultiplets, this gravity theory does not have a precise embedding in string theory.24

Nevertheless, we argue that universal features of supersymmetric black holes are already present

in this model, through the relationship with 2D Super-JT gravity.

We write the Lagrangian of pure 4D N = 2 supergravity, following the conventions of [78]:

E�1
L = �2

✓
1

2
R� IM�

MNPDN 
I

P
�
1

4
FMNF

MN+
"IJ

2
p
2
 

M

I
(FMN+i ?FMN�5) 

N

J
+4 gravitino

◆
,

(4.2)

with the standard definitions DM = @M + 1

4
!AB

M
�AB and F = dA. We also write the 4D Newton

constant as 8⇡GN = 2. In the above action and throughout this subsection, we follow the

convention that a spinor ✏I with an upper SU(2)R index has positive chirality, while a lower

index has negative chirality:

�5✏
I = +✏I , �5✏I = �✏I . (4.3)

In analyzing the supersymmetry and dimensional reduction later, we will often instead use

Dirac spinors where the chirality will be implicit.

24As explained in [79], compactification of either Type II theory on a Calabi-Yau threefold will always
produce at least one N = 2 hypermultiplet along with the gravity multiplet discussed here. This follows from
the reduction of the 10D graviton, dilaton, and 2-form.

37

8πGN = κ2

• Local SUSY transformations:

While we have explicitly displayed the Pauli terms in Eq. (4.2) proportional to the antisym-

metric symbol "IJ , we have omitted the more complicated 4-gravitino term. The form of this

term is known in general,25 but it is vanishing in the bosonic backgrounds corresponding to

extremal black hole solutions. In the dimensional reduction to 2D, we will use other methods

to fix the higher order fermion terms. With the understanding that some expressions are

augmented by these terms higher order in fermions, Eq. (4.2) is invariant under the following

local supersymmetry transformations:

�✏E
A

M
=

1

2
✏I�A MI + h.c. , (4.4)

�✏AM =
1
p
2
"IJ✏I MJ + h.c. , (4.5)

�✏ 
I

M
= (@M +

1

4
!AB

M
�AB)✏

I
�

1

4
p
2
�ABFAB�M"IJ✏J . (4.6)

The Lagrangian and supersymmetry transformations above make manifest the SU(2)R

symmetry of N = 2 supergravity. In the application of this theory to nearly AdS2 ⇥ S2

black holes described in Section 2, we considered a theory with PSU(1, 1|2) symmetry and

bosonic subgroup SL(2,R)⇥ SU(2). This latter SU(2) is realized geometrically by the spatial

rotations of the black hole, and is independent of the SU(2)R symmetry present in 4D. This

feature is characteristic of the small N = 4 superconformal algebra, which has the R-symmetry

SU(2) ⇥ SU(2)outer. In the context of this paper, it is possible to show that the outer R-

symmetry corresponds to the 4D SU(2) global symmetry.26 Because the outer symmetry plays

no role in our analysis, it will be convenient to use a formulation of N = 2 supergravity with

Dirac rather than Majorana gravitinos. This will hide the outer SU(2) symmetry, but simplify

many formulas in what follows. This version of the theory is presented in [39, 81], and the

passage to this formalism involves introduction of the Dirac spinors  M =  1

M
+ i 2

M
.

4.2 The Black Hole and AdS2 ⇥ S2 Solutions

The extremal black hole of N = 2 supergravity is a standard solution of Einstein-Maxwell

theory which preserves 4 real supercharges of the 8 total. This is in contrast to the near horizon

25A general matter coupled N = 2 supergravity theory including additional fermion terms is found, for
instance, in [80].

26We thank E. Witten for emphasizing to us that the 4D SU(2) global symmetry is only an approximate
symmetry in supergravity; it should not be an exact symmetry of the near extremal black holes. Only the
SU(2) symmetry realized as rotations of the S2 is a physical symmetry in a more complete model such as string
theory.
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• In this theory, the Reissner-Nordstrom black hole is still a solution



4D  Supergravity𝒩 = 2

Near and Far Near the horizon, the extremal metric becomes
approximated by the Bertotti-Robinson solution, which is AdS2 ⇥ S2

supported by a constant flux:

ds
2 =

R
2
0

z2
(�dt

2 + dz
2) +R

2
0d⌦

2
2 , F =

1

2

Q

4⇡

1

z2
dt ^ dz .

Far Region: Flat Minkowski
SUSY Vacuum of 𝒩=2 SUGRA 
with 𝐼𝑆𝑂(3,1|2)

Near Region: 𝐴𝑑𝑆2 × S2
SUSY Vacuum of 𝒩=2 SUGRA with 
𝑃𝑆𝑈(1,1|2) Symmetry

Horizon:
Moves to infinite distance 
as we approach extremality

Interpolating: Extreme RN
1
2

-BPS Soliton

13 / 34
PSU(1,1 |2) ⊃ SL(2,ℝ) × SU(2)
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Dimensional Reduction
• The emergent, broken, symmetry in the throat is now PSU(1,1|2), new fermionic 

modes from gravitino become relevant at low T [Michelson, Spradlin 99]



Dimensional Reduction

• The reduction of the higher dimensional supergravity theory in the throat is 
 supersymmetric JT gravity. This can be rewritten as a  

BF theory:
𝒩 = 4 𝔭𝔰𝔲(1,1 |2)

2 N = 4 Jackiw-Teitelboim gravity and the N = 4 super-

Schwarzian

In order to be able to study the more complicated case of near-extremal black holes in 4D

N = 2 supergravity, we first need to introduce 2D N = 4 super-JT gravity and its relation

to the N = 4 super-Schwarzian. As we shall explain, the latter can be studied using a

conventional reformulation in terms of a BF theory. The di�culty will be in relating boundary

conditions in this BF theory to SUSY preserving boundary conditions, typically imposed in

the second formalism of gravity. The analysis of the N = 4 super-Schwarzian proves even

more complicated. While there have been past papers defining the N = 4 super-Schwarzian

derivative (in particular, we follow the definitions of [61] and [62]), extracting all the components

of the super-symmetric action has, to our knowledge, not been previously done.

2.1 Formulation as a psu(1, 1|2) BF theory

To obtain the bulk action of N = 4 super-JT gravity we start by considering a BF theory with

a psu(1, 1|2) superalgebra,

[Lm, Ln] = (m� n)Lm�n , [Ti, Tj] = i✏ijkTk ,

[Lm, Gp
↵] =

⇣m
2
� ↵

⌘
Gp

↵+m , [Lm, G
p

↵] =
⇣m
2
� ↵

⌘
G

p

↵+m ,

[Ti, Gp
↵] = �

1

2

�
�i
�
p

qGq
↵ , [Ti, G

p

↵] =
1

2

�
�i
�⇤ p

qG
q
↵ ,

{Gp
↵, G

q

�} = 2�qpL↵+� � 2(↵� �)(�i)qpTi , (2.1)

with all other commutators/anti-commutators between the generators vanishing. Here L0

and L±1 are bosonic generators forming an sl(2,R) sub-algebra, Ti, i = 1, . . . 3, are bosonic

generators forming an su(2) sub-algebra, and Gp
↵ and G

q

� are the fermionic generators with

p, q = 1, 2 and ↵, � = �
1

2
, 1

2
.

The action of N = 4 super-JT gravity is given by,

IBF = �i

Z
Str�F , F = dA� A ^ A , (2.2)

where A is a psu(1, 1|2) gauge field with a field strength F and � is a zero-form field transforming

in the adjoint of psu(1, 1|2). Above, Str�F = h�, F i is a quadratic bilinear form invariant

9

- Where  is a  gauge field and  is a zero-form in the adjoint of A 𝔭𝔰𝔲(1,1 |2) ϕ 𝔭𝔰𝔲(1,1 |2)

• The emergent, broken, symmetry in the throat is now PSU(1,1|2), new fermionic 
modes from gravitino become relevant at low T [Michelson, Spradlin 99]

[Heydeman, Iliesiu, Zhao, GJT 20]
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- Where  is a  gauge field and  is a zero-form in the adjoint of A 𝔭𝔰𝔲(1,1 |2) ϕ 𝔭𝔰𝔲(1,1 |2)

• Boundary conditions to glue to far-away region:

constrained to take the form

�(⌧) = �i�rL1e
r + 2i�0

r
L0 + ( �+  �� 2iL̃�r � 2i�00

r
)L�1e

�r + bi(x)Ti

+ �
p

G
p,

1
2
er/2 �

✓
2(�

p

)0 � i�r�
p

� Bi

⌧
(�i⇤)pq �

q

◆
G

p,� 1
2
e�r/2

+ �pG
p,

1
2
er/2 �

✓
2(�p)0 � i�r�

p
� Bi

⌧
(�i )pq �

q

◆
G

p,� 1
2
e�r/2 +O(e�2r) , (2.9)

where, again, we have used the short-hand notation �p(⌧) = �p,
1
2 and �

p

(⌧) = �
p,

1
2 on the

boundary @M and where �0
r
⌘ @⌧�r(⌧) denotes the derivative with respect to the boundary

time ⌧ .14

If we want to impose the boundary conditions for the dilaton (�r = const), the dilatinos

(�p,
1
2 = 0 and �

p,
1
2 = 0) and the zero-form field bi(x) we can then relate the gauge field in (2.8)

to the zero-form field �(⌧) as �2i�r A⌧ (⌧) = �(⌧), where �r is the renormalized value of the

dilaton. Thus, in the first-order formalism and in the gauge in which A⌧ takes the form (2.8),

the boundary condition that we want to impose is �(2i�rA⌧ (⌧)+�(⌧))|@M = 0. The boundary

term necessary for such a boundary condition to have a well defined variational principle is

[65]:

IBF, bdy. =
i

2

Z

@M
Str�A = �r

Z

@M
d⌧ StrA2

⌧
. (2.10)

Integrating out the field � in the bulk we find that the bulk term yields no contribution.

Replacing A⌧ in (2.10) we find that the action can then be rewritten as

IBF, bdy. = ��r

Z

@M
d⌧


L̃(⌧) +

1

2

�
(B1

⌧
)2 + (B2

⌧
)2 + (B3

⌧
)2
��

(2.11)

Thus, it is convenient to define

L(⌧) = L̃(⌧) +
1

2

�
(B1

⌧
)2 + (B2

⌧
)2 + (B3

⌧
)2
�
, from which IBF, bdy. = ��r

Z

@M
d⌧ L(⌧) . (2.12)

We will not determine L(⌧) explicitly. Rather we will see how L(⌧) (and all other variables

in (2.8)) transform under the gauge transformations that preserve the asymptotic form of

(2.8). In general in a BF theory with gauge group G, boundary gauge transformations are

parametrized by functions g in loop(G)/G. However, since we are preserving the asymptotic

14We will motivate why the constant in (2.9) can be identified with �r shortly.
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the boundary condition that we want to impose is �(2i�rA⌧ (⌧)+�(⌧))|@M = 0. The boundary

term necessary for such a boundary condition to have a well defined variational principle is

[65]:
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Z

@M
d⌧ StrA2

⌧
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Integrating out the field � in the bulk we find that the bulk term yields no contribution.

Replacing A⌧ in (2.10) we find that the action can then be rewritten as
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
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d⌧ L(⌧) . (2.12)

We will not determine L(⌧) explicitly. Rather we will see how L(⌧) (and all other variables

in (2.8)) transform under the gauge transformations that preserve the asymptotic form of

(2.8). In general in a BF theory with gauge group G, boundary gauge transformations are

parametrized by functions g in loop(G)/G. However, since we are preserving the asymptotic

14We will motivate why the constant in (2.9) can be identified with �r shortly.
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Dimensional Reduction
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 Schwarzian Theory𝒩 = 4

• The emergent, broken, symmetry in the throat is now PSU(1,1|2), new fermionic 
modes from gravitino become relevant at low T [Michelson, Spradlin 99]
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 Schwarzian Theory𝒩 = 4

• Parametrization of the  superline . The 
supercovariant derivatives are 

𝒩 = 4 Z = (τ, θa, θ̄b)
N=4 Superspace and the Schwarzian Action
• To organize the terms consistent with N = 4 SUSY, it is

convenient to use the superspace Z = (⌧, ✓a, ✓̄b) as well as the
supercovariant derivatives

Da =
@

@✓a
+

1

2
✓̄a@⌧ , D̄

a =
@

@✓̄a

+
1

2
✓
a
@⌧ .

A super-reparametrization is a transformation

⌧ ! ⌧
0(⌧, ✓, ✓̄), ✓

a
! ✓

0a(⌧, ✓, ✓̄), ✓̄b ! ✓̄
0
b
(⌧, ✓, ✓̄),

which satisfies a set of constraints (superconformal coord.
condition) given by [Matsuda, Uematsu],[Schoutens]:

Da✓̄
0
b
= 0 , D̄

a
✓
0b = 0,

Da⌧
0
�

1

2
(Da✓

0b)✓̄0
b
= 0 , D̄

a
⌧
0
�

1

2
(D̄a

✓̄
0
b
)✓0b = 0
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[Matsuda Uematsu] [Schoutens]



 Schwarzian Theory𝒩 = 4

• We can parametrize the super-reparametrizations  by the 
following functions:

Diff (S1|4)
Extracting the action

• The super-reparams act on the super circle as Di↵(S1|4), these
reparams are labeled by:

f(⌧) 2 Di↵(S1), g(⌧) 2 SU(2), ⌘
a(⌧), ⌘̄a(⌧).

When all of these are nonzero, a finite reparam is very
complicated! A simple example are the global PSU(1, 1|2)
transformations which act as global symmetries of the
Schwarzian. The bosonic part of these is:

⌧ !
a⌧ + b

c⌧ + d
�

c

4(c⌧ + d)3
(✓̄✓)2,

✓
a

! [ei
~t·~�]a

b
✓
b

1

c(⌧ �
1
2 ✓̄✓) + d

,

✓̄a ! ✓̄b[e
i~t·~�]ba

1

c(⌧ + 1
2 ✓̄✓) + d

,

26 / 34

• A finite reparam with all parameters turned on looks very complicated. A 
special subset are  transformations. For example the bosonic 
subgroup  is 

PSU(1,1 |2)
SL(2,ℝ) × SU(2)

Extracting the action
• The super-reparams act on the super circle as Di↵(S1|4), these

reparams are labeled by:

f(⌧) 2 Di↵(S1), g(⌧) 2 SU(2), ⌘
a(⌧), ⌘̄a(⌧).

When all of these are nonzero, a finite reparam is very
complicated! A simple example are the global PSU(1, 1|2)
transformations which act as global symmetries of the
Schwarzian. The bosonic part of these is:
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�
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4(c⌧ + d)3
(✓̄✓)2,

✓
a

! [ei
~t·~�]a

b
✓
b

1

c(⌧ �
1
2 ✓̄✓) + d

,

✓̄a ! ✓̄b[e
i~t·~�]ba

1

c(⌧ + 1
2 ✓̄✓) + d

,

26 / 34



• The N=4 Schwarzian derivative was defined by Matsuda and Uematsu
Extracting the action
• Due to the structure of N = 4 super-reparams, the Schwarzian

derivative carries an SU(2) index [Matsuda, Uematsu]:

S
i(Z;Z 0) = �

1

6
D�

i
D̄ log

✓
1

2
(Da✓

0b)(D̄a
✓̄
0
b
)

◆
.

This vanishes when Z
0 is a global PSU(1, 1|2) transformation of Z.

• In terms of S = ✓̄�
i
✓S

i, the bosonic part of the action is

IN=4 =

Z
d⌧d

4
✓S[f(⌧), g(⌧), ⌘(⌧)] =

Z
d⌧Sb[f(⌧), g(⌧), ⌘(⌧)]

• In components, it is a sum of 3 terms; the usual Schwarzian, a
particle moving on the SU(2) group manifold, and fermions:

IN=4 = �

Z
d⌧

h
Sch(f(⌧), ⌧) + Tr(g�1

@⌧g)
2 + . . .

i
.
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Then the super-Schwarzian action is

IN=4 = ��r

Z
d⌧Sb[f(⌧), g(⌧), ⌘(⌧)] (2.42)

where �r can be viewed as a coupling constant whose role we shall soon discuss and the factor

of 12 above is chosen such that it simplifies the factor in (2.40).

We can rewrite the action in super-field notation by defining S = ✓�i✓Si, where we sum

over i = 1, 2, 3. Then, using the expansion of Si gives,17

S = 2✓�iSi

T
✓ � 3(✓✓)✓Sf + 3(✓✓)Sf✓ + 3Sb(✓✓)

2 . (2.43)

Then the action (2.42) can be rewritten as IN=4 ⇠ �r

R
d⌧d4✓S. Note that in terms of the

S[f(⌧), g(⌧), ⌘(⌧)] there is no obvious chain rule analogous to (2.38). For this reason it will

oftentimes be easier to work with Si instead of the super-field S. To make things concrete, it is

informative to write the Schwarzian action when focusing on purely bosonic components, when

setting ⌘(⌧) = 0 in (2.42):

IN=4, bosonic[f(⌧), g(⌧), ⌘(⌧) = 0] = �

Z
�

0

d⌧�r

⇥
Sch(f, ⌧) + Tr(g�1@⌧g)

2
⇤
. (2.44)

Since ⌘(⌧) = 0 is a solution to the equations of motion we will soon use the above action to

extract the classical saddle point when quantizing the super-Schwarzian action at the level of

the path integral.

2.3.3 Transformation law and a match with the JT boundary term

In this section, we shall derive explicitly the infinitesimal transformation rules of the N = 4

super-Schwarzian (2.41). We will expand f(⌧) ⇡ ⌧ + ⇠(⌧), g ⇡ 1 + iti(⌧)�i, ⌘ ⇡ ✏(⌧) and

⌘ ⇡ ✏(⌧) and work to linear order in ⇠, ti, ✏ and ✏. A convenient way to encode the infinitesimal

reparametrizations of the super line (2.16) that automatically satisfies the constraints (2.17) is

17This is a simpler expression of Si for which more components are present. We can construct S from an S
i

as long as Si satisfies DpDqS
i = D

p
D

q
S
i = 0. To derive this we use that

(✓�i
✓)(✓�i

✓) = �3(✓✓)2, "
ijk(✓�i

✓)(✓�j
✓) = 0,

(✓�i
✓)(✓�i

G) = �3(✓✓)(✓G), (✓�i
✓)(G�

i
✓) = 3(✓✓)(G✓) .
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• The Schwarzian action corresponds to one component of this field 

3 Quantizing the N = 4 Schwarzian theory

In this section, we will study the N = 4 super-Schwarzian theory in more detail. In particular

we will compute the exact partition function and density of states. We will do the calculation

in two ways, first using the localization method of Stanford and Witten [71] and second using

the 2D CFT approach of [68], and find agreement. Then we will analyze the spectrum that we

derive and point out some salient features like the large zero temperature degeneracy and the

presence of a gap.

3.1 The action

The N = 4 super-line can be parametrized in superspace by (⌧, ✓p, ✓p), p = 1, 2, where ✓

and ✓ are Grassman variables transforming as fundamental and anti-fundamental of an SU(2)

symmetry. N = 4 super-reparametrizations are parametrized by a bosonic field f(⌧) 2 Di↵(S1),

a local transformation g(⌧) 2 SU(2) (or more precisely the loop group) and fermionic fields

⌘p(⌧) and ⌘
p
(⌧). In terms of a super-reparametrization these fields can be roughly written as

⌧ ! f(⌧) + . . . , (3.1)

✓p ! gp
q
(⌧)✓q

p
f 0(⌧) + ⌘p(⌧) + . . . , (3.2)

✓p ! ✓q g
q

p
(⌧)

p
f 0(⌧) + ⌘

p
(⌧) + . . . . (3.3)

The dots correspond to terms that are fixed by the super-reparametrization constrains and can

be found in the previous section. We also defined a Schwarzian action IN=4 = ��r

R
d⌧Sb[f, g, ⌘, ⌘]

invariant under PSU(1, 1|2) transformations acting on the fields (f, g, ⌘, ⌘). The bosonic

component of this action is

IN=4 = ��r

Z
�

0

d⌧
⇥
Sch(f, ⌧) + Tr(g�1@⌧g)

2 + (fermions)
⇤

(3.4)

which gives the usual Schwarzian action and a particle moving on SU(2). The extra terms

involve the fermions ⌘ and ⌘.
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• More Explicitly:

Bosonic 
Schwarzian

Particle moving 
on SU(2)

 Schwarzian Theory𝒩 = 4

[Heydeman, Iliesiu, Zhao, GJT 20]



4D  supergravity𝒩 = 2

Summary of Steps

Fixed U(1) charge, Look at throat



4D  supergravity𝒩 = 2

Summary of Steps

2D  Super-JT𝒩 = 4

Fixed U(1) charge, Look at throat

 BF theoryPSU(1,1 |2)



4D  supergravity𝒩 = 2

Summary of Steps

2D  Super-JT𝒩 = 4

1D Boundary mode

Fixed U(1) charge, Look at throat

Integrate out dilaton

 BF theoryPSU(1,1 |2)

 Super-Schwarzian𝒩 = 4



4D  supergravity𝒩 = 2

Summary of Steps

2D  Super-JT𝒩 = 4

1D Boundary mode

Fixed U(1) charge, Look at throat

Integrate out dilaton

 BF theoryPSU(1,1 |2)

 Super-Schwarzian𝒩 = 4

Spectrum as function of energy and spin



 Schwarzian Theory𝒩 = 4
• The spectrum of this two-dimensional black hole is extracted from the 

partition function:
In this section, we will compute the Euclidean path integral giving the partition function,20

Z(�,↵) =

Z
DfDgD⌘D⌘

PSU(1, 1|2)
exp

✓
�r

Z
d⌧Sb[f, g, ⌘, ⌘]

◆
, (3.5)

where �r is a dimensionful coupling constant of the theory. The inverse temperature � and

chemical potentials ↵ appears in the path integral through the boundary conditions of the

fields:

f(⌧ + �) = f(⌧), g(⌧ + �) = e2⇡i↵�
3
g(⌧), ⌘(⌧ + �) = �e2⇡i↵�

3
⌘(⌧), (3.6)

and similarly for ⌘. In the rest of this section we will evaluate this path integral as a function

of �, ↵ and the coupling �r, and rewrite it as a trace over a Hilbert space with a possibly

continuous spectrum.

3.2 The partition function

3.2.1 Method 1: Fermionic localization

In this section, we will solve the theory following [71]. The integration space is a coadjoint orbit

and the super-Schwarzian action generates a U(1) symmetry. Even though we will not work

out the measure and symplectic form in detail, we will assume it is chosen such that we can

apply the Duistermaat-Heckman theorem. Therefore, we will compute the classical saddles,
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⇤
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The equations of motion for f(⌧) and g(⌧) imply that:

@⌧Sch(f, ⌧) = 0 , @⌧Tr(g
�1@⌧g)

2 = 0 (3.8)

The solution for the Schwarzian is well-known and is given by f(⌧) = tan(⇡⌧/�). The solution

for the SU(2) adjoint field takes the form g = exp(iti✏i⌧), where ✏i is a constant that needs

20We leave the measure implicit in this formula. We take the measure to be the Pfa�an of the symplectic
form over the integration space Di↵(S1|4)/PSU(1, 1|2), studied in [51].
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• Boundary conditions:

Inverse Temperature
 chemical potential 

(Angular Velocity)
SU(2)

2πα = iβΩ



 Schwarzian Theory𝒩 = 4
• The partition function can be computed exactly using localization 
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Schwarzian 1-loop Fermion 1-loop

Classical Action mode 1-loopSU(2)

• Also obtained from a limit of  Virasoro characters of Eguchi and 
Taormina
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 Spectrum𝒩 = 4
• The  symmetry is broken, as much as the conformal 

symmetry in the bosonic case. There is a global super-translation group 
which survives with four supercharges. This organizes spectrum is 
supermultiplets 

PSU(1,1 |2)

energy E. Then as long as E 6= 0 the operators Q ⇠ ba act as a SU(2) doublet of lowering

fermionic operators and Q ⇠ ba† as a SU(2) doublet of rising fermionic operators. To construct

a representation we can begin with a state |Ji which transforms as a spin J representation of

SU(2), constructed such that Qp|Ji = 0. The supermultiplet will have states acting with a

single charge Q
q

|Ji, which can be expanded into (1/2)⌦ J = (J � 1/2)� (J +1/2); and acting

with two charges Q
1
Q

2
|Ji of spin J . Therefore, the supermultiplet with E 6= 0, starting with

J 6= 0 is made of (J � 1/2) � 2(J) � (J + 1/2). When we construct a supermultiplet starting

with a singlet |0i, the Q
q

|0i transforms as a doublet and Q
1
Q

2
|0i as another singlet, giving

2(0)� (1/2). Labeling the supermultiplet by the state with highest SU(2) spin, the E 6= 0 part

of the spectrum should organize as

J = (J)� 2(J � 1/2)� (J � 1), J � 1 (3.33)

1/2 = (1/2)� 2(0). (3.34)

Finally we might also have states with E = 0. Starting with a spin-J representation |Ji, having

H|Ji = 0 implies that all supercharges annihilate the state and, therefore, that’s the whole

supermultiplet.

Taking these considerations into account, we can expect the partition function of the N = 4

super-Schwarzian theory to be expanded in the following way

Z(�,↵) =
X

J

�J(↵)⇢ext(J) +

Z
dE e��E

�
�1/2(↵) + 2�0(↵)

�
⇢cont(1/2, E)

+
X

J�1

Z
dE e��E

⇣
�J(↵) + 2�

J� 1
2
(↵) + �J�1(↵)

⌘
⇢cont(J,E), (3.35)

where the sums are over half-integer J and �J(↵) ⌘
P

J

m=�J
e4⇡i↵m = sin(2J+1)2⇡↵

sin 2⇡↵
is the character

of a spin-J representation of SU(2). In the first line, the first term corresponds to states with

E = 0 while the second term to the E 6= 0 multiplet 1/2. The second line corresponds to the

sum over all other E 6= 0 supermultiplets. Therefore, ⇢(J,E) is the density of supermultiplets

with energy E 6= 0 and highest spin J , while ⇢ext(J) is the density of E = 0 states of spin J .

We will see in the next section that the spectrum of the N = 4 super-Schwarzian derived

from the exact partition function we computed above has precisely this form (although with

only singlet J = 0 zero energy states).
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- :  Supermultiplet  E = 0 (J)

- :  Supermultiplet  E ≠ 0 1/2 = (1/2) ⊕ 2(0)

Supermultiplet  J = (J) ⊕ 2(J − 1/2) ⊕ (J − 1)

Zero index:

Non-zero index:



 Spectrum𝒩 = 4
• Density of states at fixed  charge , where SU(2) J E0(J) = J2/2Φr

eS0

⇢(E)

Egap E0(1)

11/20

E

eS0

⇢(E)

Egap E0(1) E

Figure 3: Left: Density of supermultiplets labeled by the highest spin J. We show 0, which is
simply a delta function at E = 0; 1/2 which is continuous but starts at Egap ⌘ E0(1/2); and 1
which is also continuous starting at E0(1). Right: Degeneracy for all states with J = 0. These
come from 0, the delta function at E = 0, 1/2,starting at Egap, and 1, starting at E0(1). All
other supermultiplets do not have a J = 0 component.

To find the density of states we use the following identity to rewrite (3.40) as

Dcont(↵, E) = eS0

1X

m=1

m sin 2⇡m↵

tan ⇡↵

sinh
⇣
2⇡

q
2�rE �

1

4
m2

⌘

2⇡2�rE2
⇥
⇣
E �

m2

8�r

⌘
. (3.41)

We defined the Heaviside function ⇥(x) such that ⇥(x > 0) = 1 and ⇥(x < 0) = 0. The

dependence with the chemical potential can be expanded in SU(2) characters in the following

simple way

2 sin 2⇡m↵

tan ⇡↵
= �J(↵) + 2�

J� 1
2
(↵) + �J�1(↵), J ⌘ m/2, with m > 1 (3.42)

2 sin 2⇡↵

tan ⇡↵
= �1/2(↵) + 2�0(↵), J ⌘ m/2, with m = 1 (3.43)

where in the right hand side we defined the angular momentum J in terms of the integer m. In

principle we can use this formula to extract the density of states for each SU(2) representation.

Instead we will notice this is precisely the combination in equation (3.35) where J now labels

the supermultiplet J. The second line with m = 1 involves the special case 1/2. Comparing

(3.35) with (3.41) we can extract the density of supermultiplets ⇢cont(J,E) for E 6= 0 and using

(3.39) we can write the density of E = 0 states ⇢ext(J). The final answer is given by

⇢ext(J) = eS0�J,0. (3.44)

⇢cont(J,E) =
eS0J

4⇡2�rE2
sinh

⇣
2⇡

p
2�r(E � E0(J))

⌘
⇥
⇣
E � E0(J)

⌘
, for J �

1

2
, (3.45)

where the gap for each supermultiplet labeled by J is given by E0(J) ⌘ J2/(2�r).
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Figure 2: Schematic shape of the black hole spectrum at fixed SU(2) charge as a function of
energy above extremality E. We show the semiclassical answer (red dahsed) and the solution
including quantum e↵ects (purple). (a) Answer for Einstein gravity. We see there is no gap at
scale E ⇠ 1/�r and the extremal entropy goes to zero. (b) Answer for supergravity (either N = 2
in 4D or N = (4, 4) in 3D). We find a gap at the scale Egap =

1

8�r
and a number eS0 of extremal

states, consistent with string theory expectations. (c) Einstein gravity spectrum for J 6= 0. (d)
Supergravity spectrum for J 6= 0, the jumps indicate contributions from di↵erent supermultiplets
J,J+ 1/2 and J+ 1.

to Einstein gravity, is the fact that the emerging symmetry in the throat becomes the super-

conformal group PSU(1, 1|2) � SL(2,R) ⇥ SU(2). In 4D, this includes the AdS2 conformal

symmetry and the S2 isometries as bosonic subgroups [47–50], while in AdS3 the SU(2) arises

from a 3D gauge field. We find the relevant 2D mode in the throat controlling the temperature

dependence of the partition function is given by N = 4 super-JT gravity, which describes the

breaking of PSU(1, 1|2) and becomes strongly coupled at low temperatures. We will first define

this theory and solve it exactly to extract the temperature dependence of the partition function,

and from it the black hole spectrum. In order to do this, we will show that N = 4 super-JT

gravity is equivalent to a N = 4 super-Schwarzian theory, which we introduce in this paper.

5



 Supergravity in (4,4) AdS3
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from a 3D gauge field. We find the relevant 2D mode in the throat controlling the temperature

dependence of the partition function is given by N = 4 super-JT gravity, which describes the

breaking of PSU(1, 1|2) and becomes strongly coupled at low temperatures. We will first define

this theory and solve it exactly to extract the temperature dependence of the partition function,

and from it the black hole spectrum. In order to do this, we will show that N = 4 super-JT

gravity is equivalent to a N = 4 super-Schwarzian theory, which we introduce in this paper.
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JR = 0

JR ≠ 0

J2
R /2Φr

• Extremal-BPS State: Large momentum  and 
 charges . Near-extremal 

states described by same spectrum as before, 
with parameters:

P
SU(2) JL ≠ 0, JR = 0

S0 = 2π kP − J2
L Φr =

k
4

J → JR



Gap in the D1-D5 system

• The near-extremal black hole appearing in the D1-D5 system has a  
geometry . This is described by (4,4) sugra with level AdS3 × S3

k = Q1Q5

• The near-extremal spectrum predicts the index matches with the Bekenstein-
Hawking formula and the gap at  is given byJR = 0

Egap =
1

2Q1Q5

• This is controlled by the 2D Virasoro algebra but also has a stringy origin 
explained by Maldacena and Susskind. 



Conclusions



Conclusions and Open Questions
Extremal Physics   +   Near-extremal physics

e.g. Sen’s quantum entropy function JT mode, T dependence

• Black hole spectrum near extremality fixed by pattern of symmetry breaking. 
Another important example is . SU(1,1 |1)

• Another application: Hartle-Hawking wavefunction of a  universeS1 × S2

[Maldacena Yang GJT 19]

• Prediction for behavior of higher-dimensional CFTs at low temperature/large 
charge, emergence of “local criticality”. Can we show this using a bootstrap 
argument?

Localization

• A gravitational calculation of the index?

• Matrix dual to pure  Super-JT?𝒩 = 4



Extra



BHs with emergent SU(1,1 |1)
• Examples: Near-BPS black holes in 4D and 5D gauged SUGRA with 

negative cosmological constant.

• Low-temperature thermodynamics captured by the  Schwarzian𝒩 = 2

A N = 2 super-Schwarzian spectrum

In this appendix, we analyze the N = 2 super-Schwarzian theory [58]. We review the solution

given by [71] using localization and the exact spectrum derived in [68]. Even though we will

not work out the reduction in detail, we expect these results to be relevant to the spectrum of

near-extremal near-BPS black holes in gauged supergravity in higher dimensional AdS.

A.1 The action

We follow the definition of the N = 2 super-Schwarzian theory given in [58]. The theory

can be described by superspace coordinates (⌧, ✓, ✓). We will consider super-reparametrization

(⌧, ✓, ✓) ! (⌧ 0, ✓0, ✓
0
), which satisfy the constrainsD✓

0
= D✓0 = 0, D⌧ 0 = ✓

0
D✓0 andD⌧ 0 = ✓0D✓

0
.

Here we used the super-derivative D ⌘ @✓ + ✓@⌧ and D ⌘ @
✓
+ ✓@⌧ . We will parametrize the

solutions by

⌧ 0 = f(⌧) + . . . , (A.1)

✓0 = ei�(⌧)
p
f 0(⌧)✓ + ⌘(⌧) + . . . (A.2)

✓
0

= e�i�(⌧)
p
f 0(⌧)✓ + ⌘(⌧) + . . . , (A.3)

where the dots denote higher order terms necessary to solve the super-reparametrization con-

strains. We introduce with this the time-dependent fields f(⌧), ei�(⌧) 2 U(1) (or more precisely

the loop group) and fermions ⌘(⌧) and ⌘(⌧). These will become the degrees of freedom of the

Schwarzian theory. The Schwarzian derivative is defined as

S(f, �, ⌘, ⌘) =
@⌧D✓

0

D✓
0 �

@⌧D✓0

D✓0
� 2

@⌧✓0@⌧✓
0

(D✓
0
)(D✓0)

= . . .+ ✓✓Sb(f, �, ⌘, ⌘) (A.4)

Finally, the N = 2 super-Schwarzian action is given by IN=2 = ��r

R
d⌧d✓d✓S = ��r

R
d⌧Sb.

The explicit expression is complicated but the bosonic part is naturally given by

IN=2 = �r

Z
Sch(f, ⌧) + 2(@⌧�)

2 + (fermions), (A.5)

and the terms we omit involve the fermions ⌘ and ⌘. Finally the action is invariant under a

global SU(1, 1|1) acting on the fields f, �, ⌘, ⌘ which can be found explicitly in [58]. In this
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• Density of states from exact quantization:

1 N = 2 Super-JT

1.1 Disk partition function

The partition function from localization is

ZD(�,↵) = e
S0
X

n2Z

(�1)n⌫
2 cos (⇡q̂(↵ + n))

(1� 4q̂2(↵ + n)2)
e

2⇡2�r
� (1�4q̂2(↵+n)2) (1)

where ⌫ = 0, 1 mean no anomaly or anomaly, respectively. This can be inversed Laplace

transform to write the spectrum

ZD(↵, �) =
X

Q2Z+ ⌫
2 ,|Q|< q̂

2

e
2⇡i↵Q

e
S0
⇡

q̂
cos

⇣
⇡Q

q̂

⌘
(2)

+ e
S0

X

Q2Z+ ⌫
2

�
e
2⇡i↵Q + e

2⇡i↵(Q�q̂)
� Z 1

E0(Q)

dEe
��E

sinh
⇣
2⇡

p
2�r(E � E0(Q))

⌘

2q̂E
.

where E0(Q) ⌘ 1
8�r

(Q
q̂
�

1
2)

2.

Derivation

This is what I got from a limit of Virasoro characters. Instead I can also do localization

to double-check. Following [1] for the disk, the classical solutions are f0(⌧) = tan ⇡⌧

�
,

and �0(⌧) = bqn2⇡⌧
�
. Then the classical action is I = �

2⇡2�r
�

(1� 4bq2n2) and the quadrat-

icfermion action is Iquad. ⇠
P

m
(4m2

� 1)(m� nbq)⌘m�nbq⌘̄�m+nbq. The zero modes we are

modding out by are m = ±1/2 and the n dependence of the one-loop determinant is
Q

m 6=±1/2
m�nbq
m

= 2 cos(⇡bqn)
1�4bq2n2 , where the product is over all half-integers except ±1/2.

1.2 Trumpet partition function

The trumpet partition function is

ZT (�,↵; b) =
X

n2Z

(�1)n⌫
�r

�
2 cos (⇡q̂(↵ + n)) e�

�r
2� b

2

e
� 8⇡2�r

� q̂
2(↵+n)2

, (3)

where b is the length of the geodesic and we fix the U(1) holonomy on the geodesic to

be trivial. Doing an inverse Laplace transform we can get

ZT (�,↵; b) =
X

Q2Z+ ⌫
2

�
e
2⇡i↵Q + e

2⇡i↵(Q�q̂)
� Z 1

E0(Q)

dEe
��E

cos
⇣
b

p
2�r(E � E0(Q))

⌘

2⇡q̂
p
2(E � E0(Q))/�r

. (4)

3

[Fu Gaiotto Maldacena Sachdev]

• Besides  and , also depends on two discrete parameters S0 Φr ̂q ∈ ℤ, ν = 0,1

[Stanford Witten][Mertens GJT Verlinde]
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eS0

⇢(E)

Egap

Q0

Q

E0(Q) E

No anomaly

eS0

⇢(E)

E0(Q)

Q

Q = 1/2

E

Anomaly

Figure 5: Density of supermultiplets as a function of energy E and charge Q. Left: Odd bq and no
anomaly. The delta function at E = 0 involves charges in the range |Q| < 1/2. The supermultiplet
with the lowest gap has Q0 = 1/2 ± 1/(2bq) with Egap = E0(Q0). Other supermultiplets labeled
by Q start at higher energies as shown. Right: Odd bq and anomaly. The delta function at E = 0
involves charges in the range |Q| < 1/2. The supermultiplet with Q = 1/2 has no gap. Other
supermultiplets have a gap, as shown.

Our convention for the 4D gamma matrices �A is:

�0 = i�2 ⌦ 1 , �1 = �1 ⌦ 1 , �2 = �3 ⌦ �1 , �3 = �3 ⌦ �3 . (B.2)

Note that these choices mean the gamma matrices are purely real. The curved space Dirac

matrices satisfy �M = EA

M
�A, where �A satisfy {�A,�B} = 2⌘AB. Additionally, we will

sometimes make use of the 4D parity Cli↵ord element:

�5 = i�0�1�2�3 = �3 ⌦ (��2) (B.3)

Our choice is convenient for the product manifold AdS2 ⇥ S2 because the 4D gamma matrices

may be written as

(�a, �bc) = (�a, "bc�3)⌦ 1 , (�a
0
, ��5) = �3 ⌦ �i . (B.4)

where we introduced the i = 1, 2, 3 label for the SU(2) Pauli matrices of the sphere. This gamma

matrix decomposition manifests the SU(1, 1)⌦SU(2) subgroup of PSU(1, 1|2) in terms of the

higher dimensional gamma matrices.

In the gravitational theories with 2 or 4 component fermions, we also define the various

conjugate fermions. The Dirac complex conjugate is

 = i †�0 . (B.5)
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• Q:  How to extract the discrete parameters  from the higher 
dimensional black hole?

̂q ∈ ℤ, ν = 0,1


