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Abstract

Understanding when trade can be expected to occur, and at what prices, is crucial for economists
and policymakers who are interested in market design. Therefore, the purpose of this paper is to expand
on this research and analyze when two agents with varying amounts of information can be expected
to agree to a trade (also known as the Bilateral Trade Problem). I first analyze market equilibria in
which the seller observes his value for the good but the buyer does not, similar to the model proposed
in Akerlof (1970), but the buyer’s and seller’s values are correlated. I then propose a model with a two
sided information asymmetry in which the buyer and the seller each observe a private signal about the
good. Each agent cares not only about his private signal, but about the other’s signal when determining
how much he values the good (giving rise to correlated values). Finally, throughout the paper I analyze
two mechanisms - a fixed price mechanism and a mechanism where the buyer can set the price - and
discuss the e�ciency of these mechanisms when values are correlated.

1 Introduction

Many real world markets are characterized by information asymmetries between agents, and understanding
the e↵ect these asymmetries have on market outcomes and e�ciency is an important question for economists
and policymakers alike. Consider the healthcare market - doctors know more about treatment than patients,
patients know more about their true condition than doctors and insurers, and insurers know more about the
provisions of their insurance plans than either doctors or patients. Another salient example is the market for
auto services. In most cases, the employees at the auto repair shop know significantly more about the services
being o↵ered, their prices, and what the car owner really needs than the owner himself. The predictions of
classical models of perfect competition and rational behavior give little insight into how such markets will
actually operate, and understanding the role imperfect information plays in economic outcomes has become
an important area of research.

In 1945, Friedrich Hayek of the Austrian School of Economics famously proposed that market prices
reveal information about the underlying conditions of supply and demand. In particular, he believed that
the price system was the most e↵ective mechanism to coordinate the allocation of scarce resources because
of the information conveyed to buyers and sellers by market prices. Since then, economists have become
increasingly interested in what information is contained in prices, as this is a crucial thing to understand in
designing e↵ective markets and trading platforms. To motivate this further, consider the following scenario.
Assume you are looking to buy a new home, and after your real estate agent gives you a tour of a beautiful
new house, you think to yourself that you would purchase the home for $400, 000. But at the end of the
tour, the real estate agent mentions that the list price is $200, 000. The first question you would ask yourself
is, why? What does the market know that I do not? Perhaps there are no good schools nearby, or there is
a higher than average crime rate in the neighborhood. Most rational consumers would lower their valuation
for the house upon seeing the list price, because the market price has conveyed some information about the
property.

Another famous example of this is the E�cient Market Hypothesis, which posits that current stock prices
incorporate all existing public knowledge about the stock, and therefore the only way to earn a riskless profit
is to trade on private information. Whenever you purchase a stock, you are making a bet that the stock
will rise in value. But the counter-party to this trade is making the opposite bet: that the stock will decline
in value (ignore for a moment the possibility that they are selling to meet liquidity constraints). A rational
agent will then ask: why does the seller think the stock will go down? What does he know that I do not?
Even more, what does the market know that I do not?

Much of our knowledge about market design and trading platforms works under the assumption that the
buyer’s and seller’s values for the good are independent. But in order to develop more e�cient mechanisms,
it is important to understand how they work when values are correlated, i.e. when a buyer and a seller care
about the information held by the other agent. Therefore, in this paper I analyze market equilibria in games
where the buyer and seller have varying amounts of information regarding the good being transacted and
care about the information held by the other agent. I focus on what equilibrium strategies look like for the
buyer and seller, when and at what price we can expect trade to occur, and how e�cient the mechanisms
imposed are. Throughout the paper, I focus on two mechanisms: the fixed price mechanism (where a third
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party, say the government, imposes a fixed price for the good) and a mechanism in which the buyer can set
the price.

There are several notable results in this paper. First, in section 2 I present a model with interdependent
values and discrete types. In this model, the correlation between the buyer’s and seller’s values is not strictly
responsible for market outcomes. In particular, the correlation does not impact the expected gains from trade
or the likelihood of trade occurring. Second, in section 3 I present a similar model with continuous types.
In this model, the likelihood of trade occurring does depend on the correlation, and the price the buyer sets
is a function of the correlation. However, the e↵ect of changing the correlation depends on other exogenous
parameters. In particular, the price the buyer sets may be either increasing or decreasing in the correlation,
and the same is true of the threshold beyond which the buyer will agree to trade. In this model, we can
construct di↵erent markets in which the same correlation leads to di↵erent economic outcomes. However,
this model does share the same insight as Akerlof’s The Market for Lemons: all else equal, as the correlation
between the buyer’s and seller’s values increases, the likelihood of trade decreases. Finally, in section 4 I
present a model with a double sided information asymmetry in which both the buyer and seller care about
the private information held by the other. This model denotes by ↵ the weight the seller attributes to the
buyer’s information, and by � the weight the buyer attributes to the seller’s information. The main result
is that fixed price mechanisms may outperform mechanisms in which the buyer sets the price in high ↵
contexts. In such markets (for example, insurance markets), the marginal cost to the buyer of revealing
private information is high, because the seller attributes a large weight to this information. By setting a
price, the buyer reveals something about his private information, which the seller may then use to raise his
valuation for the good. In such contexts, fixed price mechanisms may be more e�cient because neither agent
can infer any information from the market price.

1.1 Literature Review

My paper contributes to several strands of literature. First, the models considered in this paper are related
to the literature on information economics. For example, the models presented in sections 2 and 3 are similar
to that in Akerlof (1970), which analyzes a fictional used car market with many buyers and sellers. The
defining feature of this market is that there is uncertainty about the quality of the vehicles being sold - they
may either be a lemon (low quality) or a peach (high quality). The seller knows the quality of the vehicle
being sold, but the buyer does not. Akerlof shows that no rational agent will agree to pay the full value of
a peach for a car, since there is a chance the car he receives will be a lemon. Thus, the value of peaches
exceeds the prevailing equilibrium price in this market, and peaches are driven out. The process continues
until all peaches are pushed out and only lemons remain - that is, the information asymmetry degraded the
average quality of cars in the market. To take this line of reasoning one step further, rational buyers should
be able to predict this process and know that only lemons remain in this market, and so no transactions will
occur. This is the so called no-trade theorem. The models in sections 2 and 3 do not consider the quality
of the good being sold, but they are similar in that the seller observes his value of the good while the buyer
does not.

My paper is also related to the literature on mechanism design. Milgrom and Stokey (1980) considers
a more complex version of the no-trade theorem. They analyze the e↵ect private market signals would have
on trade in a market with many buyers and sellers. They show that in a dynamic rational expectations
framework, risk-averse traders who receive private market signals can still not agree to a non-null trade.
In dynamic rational expectation models, where the current price vector is a result of voluntary trading in
a complete and competitive market, the equilibrium prices must be Pareto-optimal, and changes in prices
must only be a result of new information becoming available. Therefore, the main reason that no trade can
be expected to occur even in the presence of private information is that it is common knowledge that the
equilibrium allocation is both feasible and optimal for all other agents. Therefore, any willingness to accept
a trade signals to one agent that the other agent knows something he does not. Thus, once again, in this
model where all agents receive a private signal, rational agents will still never agree to a trade. My paper
is similar to this paper to the extent that it explores the no trade theorem under specific mechanisms and
analyzes when trade can be expected to occur in the presence of information asymmetries.

My paper also contributes to the literature of mechanism design that specifically studies the bilateral
trade problem. The bilateral trade problem analyzes a buyer and a seller of a single indivisible good where
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both agents receive private signals about the value of the good. The question this literature tries to answer
is the following: what mechanism, or what set of ”rules”, is optimal to impose on the buyer and seller in
order to promote certain outcomes, such as e�ciency. A lot of research has already been done to understand
the case of independent private values (that is, the buyer and seller have independent, private valuations
for the good). Myerson and Satterthwaite (1983) proved one of the most well known results in this field.
They show that if the buyer and the seller have independent private values for the good, it is impossible to
create a mechanism in which three properties hold: e�ciency (whoever values the good more will always
end up with it), individual rationality (that both player’s expected gain from trade is nonnegative), and
incentive compatibility (that truthfully reporting one’s own valuation for the good is a dominant strategy).
The implication is that the mechanism designer would necessarily sacrifice e�ciency if he wants to ensure
both the buyer and the seller are better o↵ participating in the mechanism and that they prefer telling the
truth to lying.

Much of the follow-up literature to the Myerson-Satterthwaite paper attempts to investigate what
mechanisms would be ”second-best” - that is, if it is impossible to create a mechanism in which those
three properties hold, what is the next best thing? Hagerty and Rogerson (1987) proved that in the private
value case, the fixed price mechanism and the mechanism in which one side can adjust the price are the
only dominant strategy mechanisms (this is the motivation for studying these mechanisms). Furthermore,
Börgers and Li (2019) defines a new class of mechanisms - called ”strategically simple” mechanisms - which
do not require a high level of strategic sophistication (the agents do not need to form more than first order
beliefs). Thus, the main motivation for studying the two mechanisms studied in this paper is that in the
independent private value environment, these mechanisms are robust and simple. Additionally, mechanisms
in which one side can change the price are unambiguously more e�cient than fixed price mechanisms when
values are independent. The question is, is this also true of the interdependent value case?

My paper is therefore also related to the literature on mechanism design with interdependent values.
That is, the buyer and seller’s valuations for the good depend not only on the private signal they observe,
but on the signal the other observes. Cremer and McLean (1985) and Cremer and McLean (1988) pose
a puzzle: they prove that when values are interdependent, all outcomes, including e�cient outcomes, can
be implemented by e�cient trading institutions. However, these mechanisms are neither robust nor simple.
Thus, the main purpose for identifying the class of robust and simple mechanisms above was to solve this
puzzle. The models in this paper are part of the interdependent value environment, however I simply analyze
equilibria and do not ask whether these mechanisms are robust or simple.

The rest of the paper is organized as follows: section 2 studies the two mechanisms under a discrete
probability distribution, section 3 develops the model further to allow for a continuous distribution of types,
section 4 analyzes a more general model with a double sided information asymmetry, section 5 discusses
e�ciency of the two mechanisms, section 6 is a discussion of the results, and I conclude in section 7.

2 A Model with an Uninformed Buyer and Discrete Types

2.1 Fixed Price Mechanism

Assume there are two agents who are looking to transact a particular asset at a fixed exogenous price ⇡. Each
agent assigns one of two values to the asset, one high and one low. Let F be the probability distribution of
asset values among the agents, and assume it is common knowledge. F can be summarized by the following
table:

vL
b

vH
b

vL
s

p q
vH
s

r s

where p+ q + r + s = 1. The buyer and seller must either say yes or no to the transaction, i.e. they choose
an action ai 2 {Y,N}. Furthermore, assume that the seller observes vs but the buyer does not observe vb.
The seller’s strategy is a function ss : vs ! {Y,N} and the buyer’s strategy is simply to say yes or no to
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trade. Assume the buyer has utility

Ub(a1, a2, vb) =

(
0 if a1 or a2 = N

vb � ⇡ if a1 = a2 = Y

and the seller has utility

Us(a1, a2, vs) =

(
0 if a1 or a2 = N

⇡ � vs if a1 = a2 = Y

Definition 1 (Bayesian Nash Equilibrium). (s⇤
b
, s⇤

s
) form a Bayesian Nash Equilibrium if:

1)
X

vb,vs

Ub(s
⇤
b
, s⇤

s
, vb, vs)p(vb, vs) �

X

vb,vs

Ub(ab, s
⇤
s
, vb, vs)p(vb, vs)

2)
X

vb

Us(s
⇤
b
, s⇤

s
, vb, vs)p(vb|vs) �

X

vb

Us(s
⇤
b
, ss, vb, vs)p(vb|vs)

for all ab 2 {Y,N} and strategies ss.

Note first that this game has infinitely many Bayesian Nash Equilibria. In particular, when s⇤
b
= N , the

seller’s expected utility will be 0 no matter what strategy he chooses. Thus, I will focus only on Bayesian
Nash Equilibria where the buyer agrees to trade. Another trivial case is when s⇤

b
= Y and ⇡ � vH

s
, as in

this case both the buyer and seller will always agree to trade. Therefore, I will restrict attention to the case
where the buyer says yes to trade and vL

s
 ⇡  vH

s
. Consider the following strategies:

s⇤
s
=

(
Y if ⇡ � vs
N otherwise

and
s⇤
b
= Y

That is, the seller’s strategy is to say yes as long as the price is above her observed value, and the buyer says
yes to trade.

Theorem 1. Let vL
s
 ⇡  vH

s
. (s⇤

b
, s⇤

s
) form a Bayesian Nash Equilibrium if and only if

p

q
� ⇡�v

H

b

v
L

b
�⇡

Proof. First assume that (s⇤
b
, s⇤

s
) form a a Bayesian Nash Equilibrium. From Definition 1, we have:

X

vb,vs

Ub(s
⇤
b
, s⇤

s
, vb, vs)p(vb, vs) � 0

=) Ub(s
⇤
b
, s⇤

s
, vL

b
, vL

s
)p+ Ub(s

⇤
b
, s⇤

s
, vL

b
, vH

s
)r + Ub(s

⇤
b
, s⇤

s
, vH

b
, vL

s
)q + Ub(s

⇤
b
, s⇤

s
, vH

b
, vH

s
)s � 0

=) p(vL
b
� ⇡) + q(vH

b
� ⇡) � 0

=) p

q
� ⇡ � vH

b

vL
b
� ⇡

Now assume that p

q
� ⇡�v

H

b

v
L

b
�⇡

. It was shown above that this implies the buyer’s expected utility is non-

negative. Before calculating the seller’s expected utility, we can normalize the above probability distribution
to give us the conditional probability distribution. We have:

p(vL
b
|vL

s
) =

p

q

p

q
+ 1

p(vH
b
|vL

s
) =

1
p

q
+ 1

The seller’s expected utility is given by:
X

vb

Us(s
⇤
b
, s⇤

s
, vb, vs)p(vb|vs)
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= Us(s
⇤
b
, s⇤

s
, vL

b
, vL

s
)p(vL

b
|vL

s
) + Us(s

⇤
b
, s⇤

s
, vH

b
, vL

s
)p(vH

b
|vL

s
)

= (⇡ � vL
s
)

p

q

p

q
+ 1

+ (⇡ � vL
s
)

1
p

q
+ 1

= ⇡ � vL
s

In order to show that
P

vb
Us(s⇤b , s

⇤
s
, vb, vs)p(vb|vs) �

P
vb
Us(s⇤b , ss, vb, vs)p(vb|vs) for all other strategies ss,

note that the seller’s strategy is a threshold strategy. That is, the seller will say yes to trade if vs  c for some
price c. If c < vH

s
, then the seller will say yes only if vs = vL

s
, and so

P
vb
Us(s⇤b , s

⇤
s
, vb, vs)p(vb|vs) = ⇡ � vL

s

as above. If c = vH
s
, we have: X

vb

Us(s
⇤
b
, s⇤

s
, vb, vs)p(vb|vs)

= (⇡ � vL
s
)(p+ q) + (⇡ � vH

s
)(r + s)

= ⇡ � vL
s
(p+ q)� vH

s
(r + s)

 ⇡ � vL
s
(p+ q)� vL

s
(r + s)

= ⇡ � vL
s

Therefore,
P

vb
Us(s⇤b , s

⇤
s
, vb, vs)p(vb|vs) �

P
vb
Us(s⇤b , ss, vb, vs)p(vb|vs) and (s⇤

b
, s⇤

s
) constitute a Bayesian

Nash Equilibrium.

2.2 Discussion

The intuition for the condition in theorem 1 is simple. It says that, for a low value of vs, as long as the
probability that the buyer’s value is low (p) is su�ciently large relative to the probability that his value is
high (q), the buyer will engage in trade. Also note that, if we were to shift the range of the buyer’s values
(vL

b
, vH

b
) up, we would expect that the buyer would be more willing to engage in trade. Indeed, this is

consistent with the intuition from theorem 1. When vH
b

and vL
b
increase, the fraction on the right hand side

decreases, and a su�cient decrease may lead the buyer to engage in trade he otherwise would have said no
to.

It is also important to realize that the condition in theorem 1 does not depend on r or s, but the
correlation between vb and vs does. The correlation function between vb and vs is too complicated to present
here for arbitrary vb and vs. Therefore, assume vL

b
= vL

s
= 0 and vH

b
= vH

s
= 1. The correlation is given by

1

⇢(q, r, s) =
�s(s+ r � 1)� q(r + s)p

(q2 + s(s� 1) + q(2s� 1))(r2 + s(s� 1) + r(2s� 1))

Let p

q
= 2. Then, according to condition 1, as long as ⇡  1

3 , trade will occur. The following table
illustrates the expected gains from trade and the correlation for various values of r and s.
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Correlation, Distributions, and Gains from Trade

p q r s E[Us] E[Ub] ⇢

0.5 0.25 0.25 0 ⇡
0.25-
0.75⇡

-0.333

0.5 0.25 0 0.25 ⇡
0.25-
0.75⇡

0.577

0.5 0.25 0.2 0.05 ⇡
0.25-
0.75⇡

-0.126

0.5 0.25 0.05 0.2 ⇡
0.25-
0.75⇡

0.406

0.5 0.25 0.15 0.10 ⇡
0.25-
0.75⇡

0.065

0.5 0.25 0.10 0.15 ⇡
0.25-
0.75⇡

0.236

Note that in the table above, changing the values of r and s has no e↵ect on whether or not trade
occurs or the expected gains from trade to either player. However, the correlation varies dramatically from
case to case. Therefore, this model suggests that the correlation between vb and vs has no impact on the
e↵ectiveness of the fixed price mechanism. Rather, it is the relative likelihood of the buyer’s value being low
that is important, and this may correspond with either positive or negative correlations.

2.3 Buyer Sets Price

Now consider a mechanism in which the buyer can set the price. Let the utility functions be the same as in
section 2.1. The seller’s strategy is still a function ss : vs ! {Y,N} but the buyer’s strategy is now of the
form sb = ⇡ 2 R. As before, there are infinitely many nash equilibria (if the seller’s strategy is to say no for
all vs, the buyer will have the same expected utility regardless of his strategy). Thus, I restrict attention to
equilibria in which trade occurs.

Consider the following strategies:

ss⇤ =

(
Y if ⇡ � vs
N otherwise

and
sb⇤ = ⇡ = vH

s

Theorem 2. Assume vL
s
 vL

b
p+ vH

b
q. (s⇤

b
, s⇤

s
) form a Bayesian Nash Equilibrium if and only if

vL
b
(p+ r) + vH

b
(q + s)� vH

s
� (p+ q){vL

b
p+ vH

b
q � vL

s
}

Proof. First assume (s⇤
b
, s⇤

s
) form a Bayesian Nash Equilibrium. Then we know the expected utility from

setting a price ⇡ = vH
s

must be greater than or equal to that from setting any other price. The expected
utility to the buyer conditional on the seller agreeing to trade is given by:

E[Ub] = P (vs  ⇡){E[vb|vs  ⇡]� ⇡} (1)
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If ⇡ � vH
s
, then (1) becomes:

E[Ub] = vL
b
(p+ r) + vH

b
(q + s)� ⇡

since P (vs  ⇡) = 1 and E[vb|vs  ⇡] = E[vb]. This expression is maximized when ⇡ takes its lowest possible
value, i.e. ⇡ = vH

s
. Now assume vL

s
 ⇡ < vH

s
. (1) becomes:

E[Ub] = (p+ q){vL
b
p+ vH

b
q � ⇡}

This is maximized when ⇡ = vL
s
. Finally, assume ⇡ < vL

s
. In this case, it is clear the buyer’s expected

utility is zero because the seller will never agree to trade (since vs is guaranteed to be greater than ⇡).
Therefore, if (s⇤

b
, s⇤

s
) form a Bayesian Nash Equilibrium, it must be true that:

vL
b
(p+ r) + vH

b
(q + s)� vH

s
� (p+ q){vL

b
p+ vH

b
q � vL

s
}

Now let vL
b
(p + r) + vH

b
(q + s) � vH

s
� (p + q){vL

b
p + vH

b
q � vL

s
}. Then, from above, we know that the

expected utility from setting a price ⇡ � vH
s

is greater than or equal to setting a price ⇡ < vH
s
. Since the

buyer’s expected utility is maximized when setting the lowest possible price ⇡ � vH
s
, he sets a price ⇡ = vH

s
.

Finally, the condition at the beginning of theorem 2 guarantees that the expected utility from trading will
always be non-negative.

There is also an equilibrium in which the buyer sets a price ⇡ = vL
s
. Consider the following strategies:

Consider the following strategies:

ss⇤ =

(
Y if ⇡ � vs
N otherwise

and
sb⇤ = ⇡ = vL

s

Theorem 3. Assume vH
s

 vL
b
(p+ r) + vH

b
(q + s). (s⇤

b
, s⇤

s
) form a Bayesian Nash Equilibrium if and only

if vL
b
(p+ r) + vH

b
(q + s)� vH

s
 (p+ q){vL

b
p+ vH

b
q � vL

s
}

Proof. The proof is identical to the proof of theorem 2 except for the fact that the inequality sign in theorem
2 is flipped. Therefore, it is left to the reader to verify this as an equilibrium.

2.4 Discussion

Although the conditions in theorems 2 and 3 appear complicated, they are quite intuitive. Note that the
condition in theorem 2 can be rewritten as:

E[vb]� vH
s

� E[Ub|⇡ = vL
s
]

That is, the uninformed buyer will want to set a price ⇡ = vH
s

if either his expected valuation for the good
is very high or if vH

s
is not that large (i.e. if it does not cost the buyer a lot to guarantee the seller agrees

to trade). But if vH
s

is very large or if the buyer’s expected value for the good is not that high, he will want
to set a price ⇡ = vL

s
(note that the conditions at the beginning of theorems 2 and 3 ensure the expected

utility from doing so will always be nonnegative). Note too that in this model, it is quite easy for ine�cient
trade to arise. For example, if p and q are zero, theorem 2 tells us that the buyer will set a price ⇡ = vH

s
if:

vL
b
r + vH

b
s � vH

s

If vL
b
< vH

s
, then we know with probability r ine�cient trade will arise.

Finally, we again want to analyze what e↵ect di↵erent probability distributions (and therefore corre-
lations) have on expected gains from trade and whether or not trade occurs. For simplicity, assume that
(vL

b
, vH

b
) = (0.5, 2) and (vL

s
, vH

s
) = (0.5, 0.75). For all of the following distributions, the buyer prices the

good at vL
s
= 0.50, i.e. we are in the setting of theorem 3. The following table presents the expected gains

from trade for both players along with the corresponding correlations between vb and vs.
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Correlation, Distributions, and Gains from Trade

p q r s E[Us] E[Ub] ⇢

0.5 0.25 0.25 0 0 0.0625 -0.333

0.5 0.25 0 0.25 0 0.0625 0.577

0.5 0.25 0.2 0.05 0 0.0625 -0.126

0.5 0.25 0.05 0.2 0 0.0625 0.406

0.5 0.25 0.15 0.10 0 0.0625 0.065

0.5 0.25 0.10 0.15 0 0.0625 0.236

Once again, notice that the expected gains from trade are independent of the correlation between vb and
vs. In this model, it is not the correlation that is important in determining whether trade occurs or what
the expected gains to trade may be. Rather, it is the seller’s expected value for the good and the likelihood
that the seller agrees to trade that are important here, and the correlation gives us little insight into either.

3 A Model with an Uninformed Buyer and Continuous Types

In this section, I will build upon the model to allow for a continuous range of asset values for both players.
Assume that both the buyer’s and the seller’s asset values are given by

vb ⇠ N(µb,�b), vs ⇠ N(µs,�s)

and that the buyer’s and seller’s values are correlated. Further assume that vb and vs are jointly normally
distributed and that this distribution is common knowledge. Denote by fvi and Fvi

the probability density
function and conditional distribution function of player i’s value respectively, and denote by ⇢ the correlation
between vb and vs.

3.1 Fixed Price Mechanism

As before, this game has infinitely many Bayesian Nash Equilibria. In particular, (sb = N, ss) constitutes a
Bayesian Nash Equilibrium for all strategies ss. Therefore, I will again restrict attention only to equilibria in
which trade occurs. Assuming the same equilibrium strategies from section 2.1, we get the following result:

Theorem 4. (s⇤
s
, s⇤

b
) form a Bayesian Nash Equilibrium if and only if µb � ⇢�b

fvs (⇡)
Fvs

(⇡) � ⇡. Furthermore,

this is the unique equilibrium in which trade occurs.

Proof. First assume that (s⇤
s
, s⇤

b
) form a Bayesian Nash Equilibrium. This requires that the buyer’s expected

utility be nonnegative:

E[Ub] = E[Ub|as = Y ]P (as = Y ) = [E[vb � ⇡|as = Y ]]P (as = Y ) � 0

=) P (vs  ⇡)[E[vb|vs  ⇡]� ⇡] � 0

=) E[vb|vs  ⇡]� ⇡ � 0

=) E[vb|vs  ⇡] � ⇡

=) 1

P (vs  ⇡)

Z
⇡

�1
E[vb|vs]fvsdvs � ⇡

8



We can find the conditional density f(vb|vs) by dividing the joint distribution by the marginal distribution
of vs. We then get that E[vb|vs] is given by µb + ⇢�b(

vs�µs

�s

)
Thus,

=)
Z

⇡

�1
E[vb|vs]f(vs)dvs � ⇡P (vs  ⇡)

=)
Z

⇡

�1
(µb + ⇢�b(

vs � µs

�s

))fvsdvs � ⇡Fvs
(⇡)

=)
Z

⇡

�1
µbfvsdvs +

Z
⇡

�1

⇢�b

�s

(vs � µs)fvsdvs � ⇡Fvs
(⇡)

=) µb

Z
⇡

�1
fvsdvs +

⇢�b

�s

Z
⇡

�1
(vs � µs)fvsdvs � ⇡Fvs

(⇡)

=) µbFvs
(⇡) +

⇢�b

�s

[

Z
⇡

�1
vsfvsdvs � µs

Z
⇡

�1
fvsdvs] � ⇡Fvs

(⇡)

=) µbFvs
(⇡) +

⇢�b

�s

Z
⇡

�1
vsfvsdvs �

⇢�bµs

�s

Fvs
(⇡) � ⇡Fvs

(⇡)

=) µb +
⇢�b

�s

· 1

Fvs
(⇡)

Z
⇡

�1
vsfvsdvs �

⇢�bµs

�s

� ⇡

Now note that 1
Fvs

(⇡)

R
⇡

�1 vsfvsdvs = E[vs|vs  ⇡], which in the case of a normal distribution can be

expressed as E[vs|vs  ⇡] = µs � �s

fvs (⇡)
Fvs

(⇡) . Thus, we have

µb +
⇢�b

�s

(µs � �s

fvs(⇡)

Fvs
(⇡)

)� ⇢�bµs

�s

� ⇡

µb +
⇢�bµs

�s

� ⇢�b

fvs(⇡)

Fvs
(⇡)

� ⇢�bµs

�s

� ⇡

=) µb � ⇢�b

fvs(⇡)

Fvs
(⇡)

� ⇡ (2)

Now consider the reverse direction. If (1) holds, the buyer’s expected utility from always agreeing
to trade is nonnegative, and therefore saying yes is a weakly dominant strategy. We need to show that
E[Us(s⇤b , s

⇤
s
, vb, vs))] � E[Us(s⇤b , ss, vb, vs)] for all strategies ss. As before, the seller’s strategy can be thought

of as a threshold strategy in which the seller agrees to trade if vs  c for some c. The expected utility to the
seller for threshold c is Fvs

(c)(⇡ � vs). If c < ⇡, E[Us(s⇤b , ss, vb, vs)] < E[Us(s⇤b , s
⇤
s
, vb, vs)] because Fvs

is an
increasing function. If c > ⇡, we have

E[Us(s
⇤
b
, ss, vb, vs)] = Fvs

(c)(⇡ � vs)

= Fvs
(⇡)(⇡ � vs) + (⇡ � vs)(Fvs

(c)� Fvs
(⇡))

< Fvs
(⇡)(⇡ � vs) = E[Us(s

⇤
b
, s⇤

s
, vb, vs)]

since ⇡ � vs < 0 when ⇡ < vs < c. Thus, E[Us(s⇤b , s
⇤
s
, vb, vs)] � E[Us(s⇤b , ss, vb, vs)] for all strategies ss, and

(s⇤
b
, s⇤

s
) is a Bayesian Nash Equilibrium. Furthermore, this equilibrium is unique, since the seller’s expected

utility is maximized when he chooses a threshold c = ⇡.
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3.2 Analysis

Condition (2) can be thought of as a threshold for when the buyer will say yes to trade. Specifically, he

says yes to trade as long as µb � ⇡ + ⇢�b

fvs (⇡)
Fvs

(⇡) . When ⇢ = 0, the buyer agrees to trade if µb � ⇡. This

makes intuitive sense - the buyer agrees to trade as long as on average, his value is above the price. When

the correlation increases, this strategy may no longer be optimal. If ⇢�b

fvs (⇡)
Fvs

(⇡) is su�ciently large that the

inequality no longer holds, it might become optimal for the buyer to say no to trade. First note that this
term is increasing in ⇢. The buyer can use the seller’s willingness to trade as a signal of the seller’s value,
and because values are correlated, this tells him something about his own value. Specifically, when the
correlation is positive, the buyer infers from a trade agreement that the seller’s value is relatively low, and
therefore that his own value is low as well. Because there is a higher probability that his own value is low,
the threshold on µb for which the buyer agrees to trade goes up. Similarly, for negative correlations, the
buyer infers from a trade agreement that the seller’s value is relatively low, and therefore his own value is
relatively high. Because there is a higher probability that his own value is high, the threshold on µb for
which it is optimal for the buyer to trade decreases.

Consider now the impact of a change in the variance of vb on the buyer’s willingness to trade. When
⇢ = 0, changing �b has no impact on the buyer’s willingness to trade. This is because the investor is risk-
neutral - the buyer will always agree to trade if on average, his value is above the price. When ⇢ < 0,
increasing �b causes the threshold to decrease (i.e. increases the buyer’s willingness to trade). Since both
agents are assumed to be risk-neutral, this cannot be because the buyer has an intolerance to risk. To
understand the intuition, remember that the buyer’s expected value for the good conditional on vs is given
by:

E[vb|vs] = µb + ⇢�b(
vs � µs

�s

)

and that

E[vs|vs  ⇡] = µs � �s

fvs(⇡)

Fvs
(⇡)

< µs for all ⇡

Thus, the seller infers from trade that the seller’s expected value is less than µs. Then we know that for
⇢ < 0, increasing �b increases the expected value of vb conditional on the seller agreeing to trade and thus
makes him more willing to trade. Similarly, when ⇢ > 0, increasing �b will decrease the expected value of vb
conditional on trade, and therefore make the buyer less willing to trade.

This section has two important conclusions: First, the correlation is relevant in this model. In particular,
the correlation determines whether or not the buyer will say yes to trade. Second, even if agents are risk-
neutral, changing the variance of vb can still impact whether or not the buyer agrees to trade. This is because
the buyer’s expected value conditional on the seller agreeing to trade is a function of �b, and the e↵ect of
�b on his expected value depends on the correlation. When values are negatively correlated, increasing �b

makes the buyer more willing to trade because it raises his conditional expected value for the good. On
the other hand, when ⇢ > 0, increasing �b makes the buyer less willing to trade because it decreases his
conditional expected value for the good.

3.3 Buyer Sets Price

Now consider the exact model as in section 3.1 but assume that ⇡ is no longer fixed - rather, the buyer may
set the price. We now have that the seller’s strategy is a function ss : (vs,⇡) ! {Y,N} as before, but the
buyer’s strategy is to set a price ⇡ 2 R.

Theorem 5. The strategies s⇤
s
=

(
Y if ⇡ � vs
N otherwise

and s⇤
b
= ⇡ such that ⇡ solves

µb � ⇡ � ⇢�b(
µs � ⇡

�2
s

) =
Fvs

(⇡)

fvs(⇡)

form a Bayesian Nash Equilibrium.
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Proof. As before, as long as ⇡ � vs, the seller’s strategy to say yes to trade is weakly dominant. Now
consider the buyer. The buyer faces the following problem:

max
⇡

E[Ub]

= max
⇡

E[Ub|vs  ⇡]P (vs  ⇡)

= max
⇡

Fvs
(⇡)(E[vb|vs  ⇡]� ⇡)

= max
⇡

Fvs
(⇡)(

1

Fvs
(⇡)

Z
⇡

�1
E[vb|vs]fvsdvs � ⇡)

= max
⇡

Z
⇡

�1
E[vb|vs]fvsdvs � Fvs

(⇡)⇡

= max
⇡

Z
⇡

�1
(µb + ⇢�b(

vs � µs

�s

))fvsdvs � Fvs
(⇡)⇡

This integral was evaluated in section 3, so we have

max
⇡

µbFvs
(⇡) +

⇢�b

�s

Z
⇡

�1
vsfvsdvs �

⇢�bµs

�s

Fvs
(⇡)� Fvs

(⇡)⇡

= max
⇡

Fvs
(⇡)[µb +

⇢�b

�s

· 1

Fvs
(⇡)

Z
⇡

�1
vsfvsdvs �

⇢�bµs

�s

� ⇡]

= max
⇡

Fvs
(⇡)[µb � ⇢�b

fvs(⇡)

Fvs
(⇡)

� ⇡]

= max
⇡

Fvs
(⇡)(µb � ⇡)� ⇢�bfvs(⇡)

A quick look at the second-order conditions of this function show that the second derivative is of
ambiguous sign. Therefore, I plotted the objective function in Mathematica for various parameter values to
ensure we are solving for a maximum. In every case, the objective function was concave on the necessary
region. One example is presented below.

Figure 1: Graph of Fvs(⇡)(µb � ⇡)� ⇢�bfvs(⇡)

Thus, we can be reasonably confident that setting the first order condition to zero will solve for a
maximum.

We now have that ⇡ must satisfy:

@

@⇡
[Fvs

(⇡)µb � ⇢�bfvs(⇡)� Fvs
(⇡)⇡] = 0
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=) fvs(⇡)(µb � ⇡)� ⇢�bf
0

vs
(⇡)� Fvs

(⇡) = 0

=) fvs
(⇡)(µb � ⇡)� ⇢�bf

0

vs
(⇡) = Fvs

(⇡)

In the case of a normal distribution,

f
0

vs
(⇡) = fvs(⇡)(

µs � ⇡

�2
s

)

Plugging in and simplifying, we get that ⇡ must satisfy

µb � ⇡ � ⇢�b(
µs � ⇡

�2
s

) =
Fvs

(⇡)

fvs(⇡)
(3)

Although there exists no simple, closed-form solution to (2), I use numerical methods in Mathematica
to understand the economic properties behind the price formation.

Lemma 1. Assume µb = µs = µ. Then if ⇢ < �
2
s

�b

, there exists a unique, positive ⇡ that solves (2).

Proof. Let g(⇡) := (µ�⇡)(1� ⇢�b

�2
s

)� Fvs
(⇡)

fvs (⇡)
. Then equation (2) can be rewritten as g(⇡) = 0. To characterize

existence of solutions, note first that g(0) = µ(1� ⇢�b

�2
s

) > 0 and that

lim
⇡!1

g(⇡) = �1

By the Intermediate Value Theorem, we know that there exists a ⇡ > 0 where g(⇡) = 0. To show this
solution is unique, it su�ces to show that g(⇡) is one to one. We know

@g(⇡)

@⇡
= �(1� ⇢�b

�2
s

)� @

@⇡

Fvs
(⇡)

fvs(⇡)
< 0 8 ⇡

because the Mill’s ratio Fvs
(⇡)

fvs (⇡)
is increasing in ⇡. Therefore, g(⇡) is one to one and the price ⇡ that solves

(2) is unique.

3.4 Analysis

The price function that satisfies (3) has several noteworthy economic properties. First consider the impact
that an increase in the variance of the buyer’s value would have on the price. Using Mathematica to
numerically estimate the price for varying values of �b resulted in the following graphs:

⇢ = �0.5 ⇢ = 0.5

Figure 2: Price vs �b

(a) vs ⇠ N(6, 1), vb ⇠ N(6, 1)
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As we saw in section 3.2, the e↵ect of changing �b depends on the correlation. From figure 3, we see
that @⇡

@�b

> 0 if ⇢ < 0 and @⇡

@�b

< 0 if ⇢ > 0. The intuition is much the same as explained in section 3.2.
When ⇢ < 0, raising �b increases the conditional expected value of vb and makes the buyer more willing to
trade (and therefore set a higher price). When ⇢ > 0, increasing �b decreases the conditional expected value
of vb, making him less willing to trade and therefore causing him to lower the price. Finally, note that when
⇢ = 0, the price function (3) which ⇡ solves simplifies to

⇡ = µb �
Fvs

(⇡)

fvs(⇡)

There are two things to note here. First, the buyer sets a price by calculating his expected value for the

good and subtracting Fvs
(⇡)

fvs (⇡)
. This term that he subtracts accounts for the probability that the seller will

say yes to trade, and it is clear that when the values are uncorrelated, the buyer will never set a price higher
than his expected value. Second, this price function does not depend on �b. That is, an increase in �b

now has no impact on the price he will set. This arises because the buyer is primarily concerned with the
value E[vb|vs  ⇡]. When the values are uncorrelated, this becomes simply E[vb] = µ2. The buyer observes
whether the seller says yes to trade, and then uses �b to infer from this decision something about his own
value. When the values are uncorrelated, he can no longer do this.

What can we say about the price the buyer sets as a function of the correlation ⇢? That is, what can
be said about the sign of @⇡

@⇢
? The answer is it depends where along the seller’s distribution the buyer is

pricing the good. Consider first an example where ⇡ < µs presented below.

Figure 4: Price vs ⇢

(a) vs ⇠ N(8, 1), vb ⇠ N(8, 1)

As the correlation increases, the price the buyer sets decreases, and this negative relationship becomes
stronger as vs and vb become more positively correlated. The economic intuition is the following: assume vs
and vb are negatively correlated. Upon seeing that the seller agrees to trade, the buyer infers that the seller’s
value must be relatively low (lower than the price), and therefore his own value is relatively high. But as
the correlation increases, the probability that his own value is low given that the seller’s is low increases.
To compensate himself for this added risk, the buyer must lower the price as the correlation increases. As
the correlation approaches 1, the probability that the buyer’s own value is low becomes so large that his
willingness to pay for the good drops significantly. Now consider that we lower the seller’s expected value
for the good such that ⇡ > µs.
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Figure 6: Price vs ⇢

(a) vs ⇠ N(6, 1), vb ⇠ N(8, 1)

In order to understand why the two cases di↵er, recall that the buyer’s expected utility can be written
as follows:

E[Ub] = Fvs
(⇡)[µb � ⇡ + ⇢

�b

�s

(E[vs|vs  ⇡]� µs)]

Note that E[vs|vs  ⇡] = µs � �s

fvs (⇡)
Fvs

(⇡) < µs for all ⇡. Therefore, when the correlation increases, we

maximize expected utility by making E[vs|vs  ⇡]� µs smaller. To understand this intuitively, consider the
case where vs and vb are perfectly negatively correlated. The buyer would want to price the good in a range
of low values of vs, because these correlate with high values of vb and he can benefit from both a higher vb
and a lower ⇡. But if vs and vb were perfectly positively correlated, pricing in the range of low vs would
correlate with low values of vb. Therefore as the correlation increases, the buyer wants to raise the price in
order to increase the probability that the seller’s value is high given that he agrees to trade, and therefore
that his own value is high. We know that Fvs

(⇡) is a strictly increasing function, and fvs(⇡) is a decreasing
function when ⇡ > µs. Therefore, when pricing above µs, the buyer can increase E[vs|vs  ⇡] by increasing
⇡ and therefore ensure that he is pricing the good in a range of higher values of vs.

3.5 Probability of Trade

Another important question to ask in addition to what price the buyer will set is whether or not the seller
will agree to trade. That is, what is the probability that a transaction will occur at this price? We are
interested in the following probability:

P (vs  ⇡)

It is clear that whenever the price increases, the probability of trade occurring increases as well (however
this is not necessarily the case for changes in µs and �s, when the distribution of vs changes as well). For
example, consider the e↵ect of an increase in the correlation. The buyer will set a lower price, and therefore
the probability of trade goes down. This makes intuitive sense - two agents with positively correlated values
for the asset will be less likely to agree to a trade at this price if they have similar values for the asset. The
opposite is true of a decrease in ⇢. As ⇢ decreases, the buyer will set a higher price and the probability of
trade occurring will increase. If the seller values a good relatively low and the buyer relatively high, then a
trade would benefit both parties, which is why we see an increase in the probability of trade.

Once again, the e↵ect of an increase in �b is ambiguous. If ⇢ < 0, then the buyer will respond to a
higher �b by increasing the price, and therefore increasing the probability of trade occurring. Similarly, if
⇢ > 0, the buyer will respond to a higher �b by decreasing the price and therefore reducing the probability
of trade occurring.

The following table summarizes all the e↵ects described in this section.
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Comparative Statics

⇢ < 0 ⇢ = 0 ⇢ > 0

@⇡

@µs

> 0 > 0 > 0

@⇡

@µb

> 0 > 0 > 0

@⇡

@�b

> 0 = 0 < 0

@⇡

@⇢

(
> 0 if ⇡ > µs

< 0 if ⇡ < µs

(
> 0 if ⇡ > µs

< 0 if ⇡ < µs

(
> 0 if ⇡ > µs

< 0 if ⇡ < µs
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4 Two Sided Information Asymmetries

Consider the following framework. A seller possesses a single indivisible good which he is looking to trade
to a buyer. The seller observes a private signal s1 and the buyer observes a private signal s2. (s1, s2) have
joint distribution F and joint density f , and assume s1 and s2 are independent. Denote the seller’s value
vs(s1, s2) and the buyer’s value vb(s1, s2). Finally, assume utility functions of the form:

Us(s1, s2,⇡) =

(
⇡ � vs(s1, s2) if trade occurs

0 if trade does not occur

and

Ub(s1, s2,⇡) =

(
vb(s1, s2)� ⇡ if trade occurs

0 if trade does not occur

where ⇡ denotes the price at which trade occurs.

4.1 Fixed Price Mechanisms

Let ⇡ denote an exogenously fixed price at which players can either agree or not agree to trade. Thus, the
set of actions for each player is simply ⌦ = {Y,N}. That is, the players can either say yes or no to trade.

Definition 2. Let A1 denote the subset of the domain of s1 on which E[Us(s1, s2,⇡)|s2 2 A2] is positive.

Similarly, let A2 denote the subset of the domain of s2 on which E[Ub(s1, s2,⇡)|s1 2 A1] is positive. Consider
the following strategies:

s⇤1 :

(
A1 ! Y

AC

1 ! N

s⇤2 :

(
A2 ! Y

AC

2 ! N

Then if

1

P (A2)

Z

A2

vsf(s2|s1)ds2  ⇡  1

P (A1)

Z

A1

vbf(s1|s2)ds1

{s⇤1, s⇤2} constitute a Bayesian Nash Equilibrium.

Proof. Consider first the point of view of the seller. Saying yes is a weakly dominant strategy for the seller
if E[Us] � 0. We have

E[Us] � 0

=) E[Us|!b = Y ]P (!b = Y ) + E[Us|!b = N ]P (!b = N) � 0

=) E[Us|!b = Y ] � 0

=) E[⇡ � vs|s2 2 A2] � 0

=) E[vs|s2 2 A2]  ⇡

=) 1

P (s2 2 A2)
E[vs · A2 ]  ⇡

=) 1

P (A2)

Z

A2

vs(s1, s2)f(s2|s1)ds2  ⇡ (4)

An identical argument for the buyer gives the reverse inequality:

1

P (A1)

Z

A1

vb(s1, s2)f(s1|s2)ds1 � ⇡ (5)

Thus, if inequalities (5) and (6) hold, {s⇤1, s⇤2} constitute a Bayesian Nash Equilibrium.
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Proposition 1. Let f(·) be a bounded and atomless density over s1 and s2. Then there exists a pure strategy

nash equilibrium in the fixed price mechanism where both the buyer’s and seller’s strategy are nondecreasing

Proof. The proof uses theorem 1 in Athey (2001). Athey’s result shows that in finite action games, there
exists a pure strategy nash equilibrium if whenever one player uses a nondecreasing strategy, the other
player’s objective function, given by

ui(ai, si;↵�i(·)) ⌘
Z

s�i

Ui((ai,↵�i(s�i)), s)f(s�i|si)ds�i

satisfies the Single Crossing Property of Incremental Returns (SCP-IR), which for di↵erentiable objective
functions is given by:

@2

@ai@si
ui(ai, si;↵�i(·)) � 0

To clarify notation above, ai is an element taken from the set of actions, ↵i represents player i0s strategy,
si represents player i0s type (in this game, his signal), and the subscript �i will refer the corresponding
notation for the other player.

Let the support of f(·) be given by [si
¯
, si] Consider first the buyer. Since Ub is increasing in s2, we know

his strategy will take the following form:

↵b =

(
Y if s2 � c

N otherwise

for some c 2 R We can then write the seller’s corresponding objective function as:

us(as, s1;↵b) ⌘
Z

s2

c

(⇡ � vs(s1, s2))f(s2)ds2

It is clear that @
2

@ai@si
ui(ai, si;↵�i(·)) = 0. Thus, the SCP-IR is satisfied.

Now consider the seller. Since Us is decreasing in s1, we expect his strategy to take the following form:

↵s =

(
Y if s1  d

N otherwise

for some d 2 R. We can write the buyer’s objective function as:

ub(ab, s2;↵s) ⌘
Z

d

s1
¯

(vb(s1, s2)� ⇡)f(s1)ds1

Once again, we have that @
2

@ai@si
ui(ai, si;↵�i(·)) = 0. Thus, the SCP-IR is satisfied. This completes the

proof

4.2 Application

Consider an application of the model presented above. Let s1 and s2 be independent random variables given
by s1 ⇠ U [0, 1] and s2 ⇠ U [0, 1]. Let the value functions take the following form:

vs(s1, s2) = s1 + ↵s2 vb(s1, s2) = s2 + �s1

for some �1  ↵  1 and �1  �  �1. That is, both the buyer and seller care not only about their
own signal, but about the signal observed by the other agent. Thus in this model there is a double-sided
information asymmetry where neither the buyer nor the seller observes the other’s signal. Note that this
model has the nice property that, by setting either ↵ or � equal to zero, you get the corresponding model
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with a one-sided information asymmetry. A quick computation 3 shows that the correlation between vs and
vb is given by

⇢ =
↵+ �p

(↵2 + 1)(�2 + 1)
(6)

Once again, we only care about equilibria in which trade actually occurs. The following theorem
characterizes such a Nash equilibrium.

Theorem 6. Consider the following strategies:

s⇤
s
=

(
Y if s1  4⇡�2⇡↵�2↵

4�↵�

N otherwise

s⇤
b
=

(
Y if s2 � ⇡ � �

2 (
4⇡�2⇡↵�2↵

4�↵�
)

N otherwise

s⇤
b
and s⇤

s
form a Bayesian Nash Equilibrium.

Proof. We can apply theorem 4 to show that this is a Bayesian Nash Equilibrium. First note that the sets
A1 and A2 must take the forms

A1 := {s1|s1  c} A2 := {s2|s2 � d}

for some constants c, d since Us(s1, s2) is decreasing in s1 and Ub(s1, s2) is increasing in s2. Applying theorem
4 gives us:

1

P (A2)

Z

A2

vsf(s2|s1)ds2  ⇡

=) 1

P (s2 � d)

Z 1

d

(s1 + ↵s2)f(s2)ds2  ⇡

=) 1

1� d
{s1

Z 1

d

1ds2 + ↵

Z 1

d

s2ds2}  ⇡

=) 1

1� d
{s1(1� d) + ↵

1

2
(1� d2)}  ⇡

=) s1  ⇡ � ↵

2
(1 + d) (7)

Similarly, we have:
1

P (A1)

Z

A1

vbf(s1|s2)ds1 � ⇡

=) 1

P (s1  c)

Z
c

0
(s2 + �s1)f(s1)ds1 � ⇡

=) 1

F1(c)
{
Z

c

0
s2f(s1)ds1 +

Z
c

0
�s1f(s1)ds1} � ⇡

1

c
(s2c+ �

1

2
c2) � ⇡

=) s2 � ⇡ � �

2
c (8)

Equations (10) and (11) give us a system of equations of the following form:

(
c = ⇡ � ↵

2 (1 + d)

d = ⇡ � �

2 c

Solving this system gives c = 4⇡�2⇡↵�2↵
4�↵�

and d = ⇡ � �

2
4⇡�2⇡↵�2↵

4�↵�
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4.3 Buyer Sets Price

Now consider a mechanism where the buyer is free to set the price. The seller’s strategy is of the form
ss : (s1, p) ! {Y,N}, and the buyer’s strategy is now of the form sb : s2 ! p 2 R+ where p = ⇡(s2) denotes
the price observed by the seller.

Definition 3. Let A1 denote the set of (s1, p) such that E[Us(s1, s2)|⇡�1(p)] is positive. If

@

@⇡2

Z

A1

vbf(s1)ds1 < 2
@

@⇡
P (A1) + ⇡

@

@⇡2
P (A1)

then the strategies ss⇤ :

(
A1 ! Y

AC

1 ! N
and s⇤

b
= ⇡ such that ⇡ solves

@

@⇡

Z

A1

vb(s1, s2)f(s1)ds1 = P (A1) + ⇡
@

@⇡
P (A1)

constitute a Bayesian Nash Equilibrium

Proof. Consider first the problem for the buyer:

max
⇡

E[Ub]

=) max
⇡

E[Ub|s1 2 A1]P (s1 2 A1)

=) max
⇡

E[vb(s1, s2)� ⇡|s1 2 A1]P (s1 2 A1)

=) max
⇡

{E[vb(s1, s2)|A1]� ⇡}P (A1)

=) max
⇡

{ 1

P (A1)

Z

A1

vb(s1, s2)f(s1)ds1 � ⇡}P (A1)

=) max
⇡

Z

A1

vb(s1, s2)f(s1)ds1 � ⇡P (A1)

The first condition becomes:

@

@⇡

Z

A1

vb(s1, s2)f(s1)ds1 = P (A1) + ⇡P 0(A1)

Finally, the second order condition must be negative in order to ensure ⇡ solves for a maximum:

@

@⇡
{ @

@⇡

Z

A1

vb(s1, s2)f(s1)ds1 � P (A1)� ⇡
@

@⇡
P (A1)} < 0

@

@⇡2

Z

A1

vbf(s1)ds1 �
@

@⇡
P (A1)�

@

@⇡
P (A1)� ⇡

@

@⇡2
P (A1) < 0

@

@⇡2

Z

A1

vbf(s1)ds1 < 2
@

@⇡
P (A1) + ⇡

@

@⇡2
P (A1)
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4.4 Application - Linear Strategies

Now consider an application. Let s1,s2, and the value functions be the same as in section 4.2.
We are still interested only in equilibria where trade occurs. However, it is much more ambiguous what

form such equilibrium strategies must take. For the purposes of this section, I restrict attention to Bayesian
Nash Equilibria in linear strategies. Consider the following strategies:

s⇤
b
(s2) = ⇡ = s2

↵� � 1

� � 2

and

s⇤
s
(s1,⇡) =

(
Y if s1  ⇡(1� ↵(��2)

↵��1 )

N otherwise

Theorem 7. Let ↵ < 1
2 . (s⇤

b
, s⇤

s
) constitute a Bayesian Nash Equilibrium.

Proof. If the seller observes a price p, then his best response is to say yes if his expected utility is positive.
That is,

E[Us(s1, s2)|⇡�1(p)] � 0

=) s1 + ↵⇡�1(p)  p

=) s1  p� ↵⇡�1(p)

=) s1  p� ↵(p
� � 2

↵� � 1
) = p(1� ↵(� � 2)

↵� � 1
)

For simplicity, let c := 1� ↵(��2)
↵��1 Now the buyer’s best response is given by

max
⇡

E[Ub(s1, s2)]

max
⇡

E[Ub(s1, s2)|s1  ⇡c]F1(⇡c)

max
⇡

E[s2 + �s1 � ⇡|s1  ⇡c]F1(⇡c)

=) max
⇡

(s2 � ⇡)⇡c+ �E[s1|s1  ⇡c]⇡c

=) max
⇡

(s2 � ⇡)⇡c+
�

⇡c

Z
⇡c

0
s1f(s1)ds1⇡c

=) max
⇡

(s2 � ⇡)⇡c+
�

2
(⇡c)2

The first order condition gives us:
�⇡c+ (s2 � ⇡)c+ �⇡c2 = 0

=) ⇡ =
s2

2� �c

Which upon substituting for c yields:

⇡(s2) = s2
↵� � 1

� � 2
(9)

Finally, we need to check that this is a maximum. The second order condition is given by:

�2c+ �c2

which upon substituting for c yields

� (2↵� 1)(� � 2)

(↵� � 1)2

The second order condition is negative when ↵ < 1
2
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Note that this is also just a straightforward application of definition 3. We have that in equilibrium,
the price p = ⇡(s2) must solve:

@

@p

Z

A1

vb(s1, s2)f(s1)ds1 = P (A1) + p
@

@p
P (A1)

For linear strategies, the seller’s acceptance set A1 can be written as A1 := {s1|s1  pc} for some constant
c, as we did in the proof of theorem 5. Then the above can be written as

@

@p

Z
pc

0
s2 + �s1ds1 = pc+ pc

=) (s2 + �pc)c = 2pc

=) p =
s2

2� �c

Upon seeing this price, the seller’s best response is to say yes if:

s1  p� ↵⇡�1(p)

=) s1  p(1� ↵(2� �c))

We therefore know that
(1� ↵(2� �c)) = c

=) c =
1� 2↵

1� ↵�

To show that this is the same result, we can rewrite c as follows:

c =
1� 2↵

1� ↵�
=

2↵� 1

↵� � 1
=

↵� � 1� ↵� + 2↵

↵� � 1
= 1� ↵(� � 2)

↵� � 1

All that remains is to show that the first condition (concavity) in definition 5 is satisfied:

@

@⇡2

Z

A1

vbf(s1)ds1 < 2
@

@⇡
P (A1) + ⇡

@

@⇡2
P (A1)

=) @

@⇡
(s2 + �⇡c)c < 2c+ 0

=) �c2 � 2c < 0

It was shown above that this is satisfied whenever ↵ < 1
2 . This completes the proof.

Proposition 2. All trade that occurs in this equilibrium is e�cient

Proof. From the equilibrium strategies in theorem 7, we know trade occurs if:

s1  ⇡(1� ↵(� � 2)

↵� � 1
)

=) s1  s2(
↵� � 1

� � 2
)(1� ↵(� � 2)

↵�1
)

Upon simplifying, we get that trade occurs if and only if:

s2 � s1
2� �

1� 2↵

We also know that vb � vs implies:

s2 � s1
1� �

1� ↵
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Thus, to show all trade will be e�cient, we need to show that s2 � s1
2��

1�2↵ =) s2 � s1
1��

1�↵
, i.e. that

2��

1�2↵ � 1��

1�↵
We have:

2� �

1� 2↵
� 1� �

1� ↵

=) 2� � � 2↵+ ↵� � 1� 2↵� � + 2↵�

=) 1 � ↵�

This is satisfied for all ↵, �. Thus, trade under this equilibrium will always be e�cient.

4.5 Application - Nonlinear Strategies

Of course, there may also exist Bayesian Nash Equilibria in nonlinear strategies. Although no such equilib-
rium is presented here, I do derive a di↵erential equation that such a solution must satisfy. Future research
can investigate what boundary conditions to impose and attempt to numerically approximate this solution,
as it is di�cult to solve analytically.

We will start with the seller’s point of view. It was shown above that the seller will agree to trade if
and only if:

s1  p� ↵⇡�1(p)

The buyer’s best response to this strategy is to solve the following maximization problem:

max
p

(s2 � p)(p� ↵⇡�1(p)) +
�

2
(p� ↵⇡�1(p))2

Taking the first derivative with respect to p gives us:

�(p� ↵⇡�1(p)) + (s2 � p)(1� ↵
1

⇡0(⇡�1(p))
) + �(p� ↵⇡�1(p))(1� ↵

1

⇡0(⇡�1(p)
)

A necessary condition for an equilibrium is that this equals zero when p = ⇡(s2) () s2 = ⇡�1(p):

�(⇡(s2)� ↵s2) + (s2 � ⇡(s2))(1� ↵
1

⇡0(s2)
) + �(⇡(s2)� ↵s2)(1� ↵

1

⇡0(s2)
) = 0 (10)

Thus, any equilibrium pricing strategy must satisfy (9).

Lemma 2. The price function presented in 6.2 is the solution to (9) for boundary condition ⇡(0) = 0

Proof. It is clear that the price function given by

⇡(s2) = s2
↵� � 1

� � 2

satisfies the boundary condition ⇡(0) = 0. Thus we only need to show it satisfies (9). Plugging in ⇡
0
(s2) =

↵��1
��2 to the left hand side of (9) gives

(↵� 1){⇡(s2)(� � 2) + s2 � ↵�s2}
↵� � 1

Finally, plugging in ⇡(s2) = s2
↵��1
��2 yields

(↵� 1){s2(↵� � 1) + s2 � ↵�s2}
↵� � 1

= 0
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4.6 Application - Price Floors

What happens if we impose a price floor (p⇤ > 0) on the market? That is, we impose the condition that the
buyer can set any price as long as p � p⇤? The equilibrium discussion becomes more complicated because
equilibria may now be part pooling and part revealing.

We can imagine that the buyer would want to leave the price at the price floor for all signals s2  s⇤2
where s⇤2 is the signal that is mapped to p⇤, when he would decide to raise it. Now consider the seller. If the
seller observes a price p > p⇤, his strategy will be the same as before. But if he observes a price p⇤, he now
can no longer infer the buyer’s signal - he must take an expectation over s2. Upon observing p⇤, the seller
infers:

E[s2|s2  ⇡�1(s⇤2)] =
1

s⇤2

Z
s
⇤
2

0
s2f(s2)ds2 =

s⇤2
2

Therefore, the buyer’s and seller’s strategies may take the following form:

sb =

(
p if s2 > s⇤2
p⇤ if s2  s⇤2

ss =

8
><

>:

Y if p > p⇤ and s1  p� ↵⇡�1(p)

Y if p = p⇤ and s1  p� ↵

2 ⇡
�1(p)

N otherwise

The trouble, however, is that this introduces a discontinuity in the seller’s strategy. This problem is
best understood graphically:

↵ > 0 ↵ < 0

Figure 8: Seller’s Strategy

(a) ↵ 6= 0

Figure 10 shows the region of the (p, s1) plane where the seller will agree to trade - notice there exists
a jump in his strategy at p = p⇤. Consider first the case where ↵ > 0. If the buyer had signal s⇤2 + ✏
for arbitrarily small ✏, he would have an incentive to deviate from his strategy and keep the price at p⇤

to increase the probability of trade. Now consider ↵ < 0. If the seller had a signal s⇤2, he would have an
incentive to deviate and set a price p = p⇤ + ✏, once again to increase the probability of trade.
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To avoid the complications posed by pooling, we could instead consider only fully revealing equilibria,
such as those given by strategies of the following form:

sb =

(
p if s2 � s⇤2
Drop Out if s2 < s⇤2

ss =

(
Y if s1  p� ↵⇡�1(p)

N otherwise

In order for such strategies to constitute a Bayesian Nash Equilibrium, we must impose one more
requirement: the buyer’s expected utility at the price floor must be zero, i.e. he must be indi↵erent between
trading and not trading. To understand why this is the case, imagine that the buyer’s expected utility at the
price floor is positive. Then a buyer observing signal s⇤2�✏ for arbitrarily small ✏ will have an incentive to set
a price p⇤ and signal to the seller that he actually has observed s⇤2. If his expected utility at the price floor
were negative, he would clearly do better by dropping out. Thus, it must be the case that in equilibrium,
the buyer’s expected utility at the price floor is zero.

Proposition 3. The price floor game contains no fully revealing Bayesian Nash Equilibria in linear strategies

To prove this I first show that the price formula presented in section 6.2 is the only linear solution to
(9). I then show that the expected utility from a positive price floor will always be positive.

Assume that there exists a price function of the form ⇡(s2) = s2m + b which forms an equilibrium
strategy in the signaling game. Then the seller’s best response function is to say yes if and only if:

s1  p� ↵⇡�1(p) = p� ↵(
p� b

m
)

The buyer’s best response is then given by

max
p

(s2 � p)(p� ↵(
p� b

m
)) +

�

2
(p� ↵(

p� b

m
))2

Setting the first derivative with respect to p equal to zero gives us:

�(p� ↵(
p� b

m
)) + (s2 � p)(1� ↵

m
) + �(p� ↵(

p� b

m
))(1� ↵

m
) = 0

Solving for p gives

p = s2(
↵m�m2

(↵�m)(↵� + 2m� �m)
) + (

↵2�b+ ↵bm� ↵�bm

(↵�m)(↵� + 2m� �m)
)

We then get the following system for m and b:

(
m = ↵m�m

2

(↵�m)(↵�+2m��m)

b = ↵
2
�b+↵bm�↵�bm

(↵�m)(↵�+2m��m)

Solving yields m = ↵��1
��2 and b = 0. Thus, this must be the only linear price function in the signaling game.

The expected utility from setting a price ⇡(s2) = s2(
↵��1
��2 ) is given by

E[Ub|s1  p� ↵⇡�1(p)](p� ↵⇡�1(p))

which upon plugging in simplifies to:

E[Ub] =
s22(2↵� 1)

2(� � 2)

Remember that the price only maximizes utility if ↵ < 1
2 . Thus, the expected utility can only be zero if

s2 = 0. For positive price floors, this is never the case. Thus, there exists no fully revealing Bayesian Nash
Equilibrium in linear strategies.
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5 E�ciency

5.1 Independent Private Values in the Fixed Price Mechanism

Imagine a buyer and a seller are looking to engage in trade, and neither agent cares about the other’s
valuation for the good - they care only about their own value. This is the well-studied independent private
value case, and in the model presented in section 5, corresponds to the case in which ↵ = � = 0. In the
fixed price mechanism, the equilibrium strategies (using theorem 6) are for the seller to say yes to trade if
s1  ⇡ and for the buyer to say yes to trade if s2 � ⇡. Therefore, trade occurs only if s2 � s1 =) vb � vs.
Thus, in the fixed price mechanism with independent private values, trade will always be e�cient. Indeed,
interactive modeling in Mathematica confirms this:

Figure 10: s1, s2 ⇠ U [0, 1], ↵ = � = 0, ⇡ = 0.5

In figure (10), the green region is the set of s2 for which the buyer agrees to trade, the orange region is
the set of s1 for which the seller will agree to trade, and their intersection represents the region where trade
actually occurs. The blue line dictates the e�cient region, with any trade occurring above the blue line
being e�cient. Varying the price ⇡ confirms that the region of trade always lies above the blue line, and is
therefore always e�cient. However, the well-known problem with the fixed price mechanism is that too little
trade occurs. Only 50% of the e�cient region in figure 10 is captured by trade. A natural question, then,
is does the fixed price mechanism perform di↵erently when we vary ↵ and � (and therefore the correlation
between vb and vs)?

5.2 Fixed Price Mechanism - Correlated Values

To answer this, consider first changes in ↵:
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↵ = �0.5 ↵ = 0 ↵ = 0.5

Figure 11: E↵ect of Changes in ↵

(a) s1, s2 ⇠ U [0, 1], ⇡ = 0.50, � = 0

There are several things to note from figure 11. First, changing ↵ has no impact on the set of s2 for
which the buyer agrees to trade. This makes sense, the buyer’s value for the good does not depend on ↵.
Second, note that decreasing ↵ increases the region for which the seller agrees to trade, and increasing ↵
will decrease this region. To understand why this occurs, consider a situation in which a buyer and seller
are looking to transact a good, but the seller puts a negative weight on the buyer’s signal (↵ < 0). When
the seller sees that the buyer wants to engage in trade, he infers that the buyer’s signal is high. Because ↵
is negative, this reduces the seller’s perception of his own value, and increases his willingness to trade for a
given s1. Similarly, if the seller puts a positive weight on the buyer’s signal, the buyer’s willingness to trade
would increase the seller’s perception of his valuation, and decrease his willingness to trade. Finally, note
that for su�ciently large decrease in ↵, ine�cient trade may arise under the fixed price mechanism.

Now consider changes in �:

� = �0.5 � = 0 � = 0.5

Figure 13: E↵ect of Changes in �

(a) s1, s2 ⇠ U [0, 1], ⇡ = 0.50, ↵ = 0

As before, changes in � have no e↵ect on the seller’s willingness to trade - since the seller’s valuation
does not depend on �, the set of s1 for which the seller agrees to trade remains constant. However, changing
� has the opposite e↵ect on the buyer’s willingness to trade than changing ↵ has on the seller’s willingness to
trade. Decreasing � reduces the set of s2 for which the buyer will engage in trade, and increasing � increases
this set. As before, imagine a buyer and seller looking to transact a good, and imagine that the buyer puts a

26



negative weight on the seller’s signal. Upon seeing the seller willing to trade, he will infer the seller’s signal
and, because of the negative weight, reduce his own value for the good. This reduces the buyer’s willingness
to trade. Similarly, a positive value of � will increase the buyer’s perception of his own valuation for any
given (s1, s2) and therefore make him more willing to engage in trade. Finally, as before, a negative value of
� may lead to ine�cient trade occurring.

One interesting implication of the model above is that for a given correlation, the fixed price mechanism
can perform quite di↵erently. Consider the following two cases:

(↵,�) = (0.5,�0.5) (↵,�) = (�0.5, 0.5)

Figure 15: ⇢ = 0

(a) s1, s2 ⇠ U [0, 1], ⇡ = 0.50

In figure 15, both cases correspond to zero correlation between the buyer’s and seller’s values, but
the fixed price mechanism performs quite di↵erently in the two cases. The graphs suggest that the fixed
price mechanism works best when ↵ is negative and � is positive. Intuitively, it works best when the seller
negatively weighs the buyer’s signal (thereby reducing his value for any given signals and increasing his
willingness to trade ) and when the buyer positively weighs the seller’s signal (thereby increasing his value
for any given signals and increasing his willingness to trade). Another implication is that in addition to how
the values are correlated, it is important for the mechanism designer to understand why they are correlated
thus. Figure 15 shows that the fixed price mechanism may perform di↵erently for the same correlation.

5.3 Independent Private Values - Buyer Sets Price

Once again, we are interested for what values of s1 and s2 trade occurs in this game, and how does this
change as we change ↵ and �. In the independent private value case, where each agent cares only about his
own signal, the equilibrium strategies are (according to section 6.2) as follows:

s⇤
b
= ⇡(s2) =

s2
2

s⇤
s
=

(
Y if s1  ⇡

N otherwise

Since s1  ⇡ =) 2s1  s2 =) vb � vs, we know all trade that occurs will be e�cient. Indeed, this is
what we see when plotting the regions in Mathematica:
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Figure 17: s1, s2 ⇠ U [0, 1], ↵ = � = 0

In figure 19, the blue region is the region where trade would be e�cient (i.e. the buyer values the good
more than the seller), and the orange region is the region where trade actually occurs. Clearly, all trade is
e�cient in this game, but once again we want to know if changing ↵ and � can improve the e�ciency of this
mechanism.

5.4 Correlated Values- Buyer Sets Price

To understand how changing ↵ and � impacts the e�ciency of the mechanism, consider first changes in ↵:

↵ = �0.4 ↵ = 0 ↵ = 0.4

Figure 18: E↵ect of Changes in ↵

(a) s1, s2 ⇠ U [0, 1], � = 0

We see similar results as we did in section 7.2: namely, that lower values of ↵ promote trade while
higher values of ↵ discourage trade. When ↵ decreases, the seller lowers his valuation of the good for any
given (s1, s2), and is therefore more willing to trade. On the other hand, the buyer responds to a lower ↵
by decreasing the price he charges (since @⇡

@↵
> 0), which would lower the seller’s willingness to trade. The

results in figure 20 indicate that the first e↵ect is more significant; that is, the seller reduces his value for
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the good by more than the buyer will decrease the price, so that the overall e↵ect is an overall increase in
his willingness to trade.

Therefore, we can see that a mechanism in which the buyer sets the price is much more e�cient in
markets with low ↵’s, whereas they are quite ine�cient in markets with high ↵’s. Now consider the e↵ect of
changes in �:

� = �0.8 � = 0 � = 0.8

Figure 20: E↵ect of Changes in �

(a) s1, s2 ⇠ U [0, 1], ↵ = 0

As expected, we see the opposite e↵ects. Increases in � promote trade while decreases in � discourage
trade. When � increases, the buyer’s valuation for any given (s1, s2) increases, and he is therefore more
willing to engage in trade. Thus, mechanisms in which the buyer can set the price are more e�cient in
markets with high �’s and less e�cient in markets with high �’s.

There is one more thing to note from figures 20 and 22: changing � has a much smaller impact on
the amount of trade that occurs than changing ↵. The likely intuitive explanation for this is that in this
mechanism, the buyer has control over the price. He can therefore respond to a higher � by adjusting the
price he sets, and thus his expected utility need not fluctuate widely from changes in �. But the seller has
much less scope to respond to changes in ↵ - he must always choose one of two actions (to say yes or no
to trade). If the seller’s value of ↵ is high, and he infers from the price that the buyer’s signal is high, he
does not have the freedom to set or negotiate a higher price. Thus, he may simply respond by refusing to
trade. We can therefore conjecture that, in the reverse case where the seller is able to set the price and the
buyer must either choose to say yes or no to trade, the region of trade will respond much more drastically
to changes in � than to changes in ↵.

Finally, to once again illustrate how di↵erently this mechanism may play out for the same correlation,
consider the following to cases:
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(↵,�) = (0.4,�0.4) (↵,�) = (�0.4, 0.4)

Figure 22: ⇢ = 0

(a) s1, s2 ⇠ U [0, 1]

Figure 24 demonstrates two di↵erent markets in which vb and vs both have a correlation of 0, yet the
mechanism is much more e�cient in the market on the right than the market on the left. This suggests that,
just as with the fixed price mechanism, the mechanism where the buyer sets the price is more e�cient when
↵ is low and � is high but less e�cient in the opposite case.

6 Discussion

6.1 Implications

There are several noteworthy implications of the models studied above. The first is that, in the models
presented in sections 2 and 4, the correlation between vb and vs did not seem to be directly responsible for
market outcomes. In particular, recall that in the model presented in section 4, one could construct two
markets with the same correlation but vastly di↵erent market outcomes and e�ciency properties. Rather,
it was important to understand why the buyer’s and seller’s values exhibited a certain correlation. Note
also that in the model presented in section 3, although the price the buyer set did depend on ⇢, the e↵ect
of changing ⇢ itself depended on �b. What’s more, in that model a given correlation corresponded to more
than one price, just as was seen in the model with the two sided information asymmetry. This again suggests
that what’s most important is to understand why the values exhibit a certain correlation. For example, are
values positively correlated because the buyer puts a positive weight on the seller’s signal, or because the
seller puts a positive weight on the buyer’s signal? The two cases have opposite economic properties, and it
is important to di↵erentiate between them.

Second, the fixed price mechanism is sometimes more e�cient than the mechanism in which the buyer can
set the price. Although a true analysis of e�ciency gains requires that we compare the fixed price mechanism
not with a freely floating price but with a price floor mechanism where the price floor is set at the fixed price,
it is still interesting to discuss why we see the fixed price mechanism outperform in some markets. Computer
simulations suggest that in the model presented in this paper, the fixed price mechanism outperforms in
markets with high ↵’s and low �’s. For example, in a market with (↵,�) = (0.4, 0), the probability of trade
occurring is 10% in the fixed price mechanism but only 5% when the buyer can set the price. Why? The
likely explanation is because the game in which the buyer can set the price is a signaling game. In the
real world, we can only use private information to the extent that we are willing to reveal it (or something
about it). In markets with low ↵’s, the marginal cost to revealing private information is low, because the
seller does not put a significant weight on the buyer’s signal. But in markets with high ↵’s, the marginal
cost to revealing private information is much higher, and this reduces the e�ciency of the mechanism. This
helps explain why the fixed price mechanism performs better in high ↵ contexts: the seller can longer infer
anything about the buyer’s signal if the price is fixed by a third party.
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To illustrate a more concrete example, consider the insurance market. Insurance markets are plagued
by adverse selection (people who are sicker tend to value insurance more). We can therefore expect such
markets to have high ↵’s and low �’s, since the insurance underwriter likely cares a lot about the buyer’s
private signal regarding his health, but the buyer probably does not care too much about the insurer’s value
for the contract. In other words, this is a context where the marginal cost to the buyer of revealing his
private signal is potentially very large. In such a market, this model suggests it would be preferable to let a
third party such as the government fix the price of the contract rather than let the buyer propose a price,
because the insurer will try to use that price to infer the true health status of the buyer.

Third, with information asymmetries, trade under the fixed price mechanism is not always e�cient. The
first panels in figures 11 and 13 demonstrate that trade may occur even if vs > vb, something that would
not happen with complete information. However, proposition 2 proves that trade under the equilibrium
proposed in section 6.4 is always e�cient. This demonstrates a trade-o↵ between the two mechanisms. The
fixed price mechanism may be preferable in high ↵ contexts because it removes the possibility of the buyer
losing from revealing his information, but the fixed price leaves the buyer and seller with little flexibility. If
the buyer can set the price, he can adjust the price according to his signal and the values of ↵ and �, and
therefore he has much more control over his (and the seller’s) expected gains from trade. But in the fixed
price mechanism, agents can only decide between saying yes or no to trade. In other words, when rational
agents have control over the price at which they trade, they may adjust this price to prevent ine�ciencies
from arising. But when the price is fixed by a third party, they do not have this freedom, and must either
agree to trade in a mechanism which may result in ine�cient trade, or say no to trade altogether.

6.2 Limitations and Future Research

There are several limitations of the results presented in this paper. The largest and most significant is that,
with the exception of proposition 1, all the results discussed in this paper are based on the assumption
of specific probability distributions. Future research should investigate the model under other probability
distributions. Even more e↵ective would be an understanding of how these mechanisms operate under the
assumption of an arbitrary density function. Second, the analysis of the game in which the buyer sets the
price is incomplete. There exist more solutions to the di↵erential equation proposed in section 4.5, and
future research should investigate other boundary conditions and attempt to approximate other solutions,
either numerically or analytically. Third, a true discussion of e�ciency gains requires us to compare the
fixed price mechanism with the price floor mechanism in which the buyer may raise the price, rather than a
game in which the buyer can set any price. The price floor game was briefly investigated in 4.6, and some of
the challenges were discussed. It was shown that in this game, there exists no fully revealing Bayesian Nash
Equilibrium in linear strategies. However, there may exist fully revealing equilibria in nonlinear strategies (of
a form that satisfies equation (9)), and future research should investigate this possibility. Furthermore, there
may exist equilibria that are part pooling and part revealing. Thus, a more general analysis of equilibria in
the price floor game under correlated values is still needed. Finally, a limitation for the mechanism designer
is that it may be quite hard to estimate the values of ↵ and � in practice. It is likely that the buyer and seller
do not even know there own implicit values of ↵ and �, and so implementing the theoretical conclusions
in this paper may be somewhat challenging. Future empirical work could investigate if there is a way to
extrapolate implicit values of ↵ and � from behaviors observed in real life markets.

7 Conclusion

This paper studied the e↵ect of information asymmetries on trade and price formation in markets with
correlated values. The models presented in sections 2 and 4 suggest that it is not the correlation itself
that dictates market outcomes, but why we observe that correlation in the first place. In particular, we
can construct theoretical markets with the same correlation but widely varying market outcomes. The
correlation does play a significant role in the model presented in section 3, but it is still true that the same
correlation may correspond to more than one price being set. Section 4 proposed a model with a double-
sided information asymmetry which has the convenient property that by setting either ↵ or � equal to zero,
you achieve the corresponding model with a one-sided asymmetry. Throughout the paper, I focused on
two mechanisms: a fixed price and a mechanism in which the buyer can set the price. It was shown that
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fixed price mechanisms outperform in markets where the marginal cost to revealing private information is
high, such as insurance markets. However, due to their having less flexibility, fixed price mechanisms may
also result in some ine�cient trade. Future research should investigate the e�ciency properties of these
mechanisms further, and extend these results to other plausible trading mechanisms.
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8 Appendix

1. We have E[vb] = vL
b
(p+ r) + vH

b
(q + s) and E[vs] = vL

s
(p+ q) + vH

s
(r + s). We also know that E[vbvs] =

vL
b
vL
s
p+vL

b
vH
s
r+vH

b
vL
s
q+vH

b
vH
s
s. Finally, we have that V ar(vb) = E[v2

b
]�E[vb]2 = (vL

b
)2(p+r)+(vH

b
)2(q+

s)�(vL
b
(p+r)+vH

b
(q+s))2 and V ar(vs) = E[v2

s
]�E[vs]2 = (vL

s
)2(p+q)+(vH

s
)2(r+s)�(vL

s
(p+q)+vH

s
(r+s))2.

Plugging in vL
b
= vL

s
= 0, vH

b
= vH

s
= 1, and using the fact that p+ q + r + s = 1, we have that:

⇢(q, r, s) =
�s(s+ r � 1)� q(r + s)p

(q2 + s(s� 1) + q(2s� 1))(r2 + s(s� 1) + r(2s� 1))

2. We have that E[vs] = µ1+↵µ2 and E[vb] = µ2 + �µ1. Furthermore, vbvs = �s21 +↵s22 + s1s2(1+↵�),
so E[vbvs] = [s21] + ↵E[s21] + (1 + ↵�)E[s1s2] = �(µ2

1 + �2
1) + ↵(µ2

2 + �2
2) + (1 + ↵�)µ1µ2. This now gives us

the covariance: cov(vb, vs) = E[vbvs]�E[vb]E[vs] = ��2
1 +↵�2

2 . Finally, dividing by the standard deviations

gives us the correlation: ⇢ = ��
2
1+↵�

2
2p

�
2
1+↵2�2

2

p
�
2
2+�2�2

1

.

3. We have that E[vs] = E[s1 + ↵s2] =
1
2 + ↵

2 . Similarly, we have E[vb] =
1
2 + �

2 . Now, vsvb =

(s1 + ↵s2)(s2 + �s1) = ↵s22 + �s21 + s1s2(1 + ↵�) and E[vsvb] =
↵

3 + �

3 + 1+↵�

4 . To calculate covariance, we

have cov(vs, vb) = E[vsvb] � E[vs]E[vb] =
↵+�

12 . We also know that V ar(vs) = V ar(s1 + ↵s2) = V ar(s1) +

↵2V ar(s2) = ↵
2+1
12 and V ar(vb) = �

2+1
12 . Dividing by the standard deviations gives us the correlation:

⇢ = ↵+�p
(↵2+1)(�2+1)

.
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