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Abstract

Regarding the medical resource shortage in the COVID-19 pandemic, several recent

studies propose a general reserve system for health care rationing in seek of overcoming the

limitations of the widely adopted priority system.

This thesis discusses how the reserve system deals with the challenges of the priority sys-

tem and analyzes two potential benefits of the reserve system on a static basis: (1) Preventing

people from exaggerating qualification through cheating, and (2) facilitating compromises

among stakeholders.

The first finding is that, in the reserve system, planners can adjust the medical units

assigned to reserve categories to discourage cheating, and they can achieve similar effects

in the priority system by introducing supervision and punishment. Secondly, the reserve

system not only simplifies the complexity of thinking by leading policymakers to create

mental accounts but also promotes consensus in the negotiating process.
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1 Introduction

In the COVID-19 pandemic, there are debates concerning the existing medical resource

allocation guidelines, and discussions concentrate on one limitation of the currently adopted

priority system about its failure to capture essential ethical values in some situations. Fair

allocation requires the adoption of a multi-value ethical framework based on certain contexts.

Typical ethical principles include equity, which means treating people equally with respect to

benefits and burdens; instrumental valuation, which means prioritizing those who will save

lives in the future or those who have saved lives in the past; and so on. Failing to represent

ethical principles as designed would negatively affect the allocation efficiency(Pathak et

al. 2020; Emanuel et al. 2020). Examples of the debates include deciding the prioritization

of essential personnel such as the front-line healthcare workers. Some worry that if specific

groups of people are prioritized through the priority system, in extreme scenarios, no units

may be left for the rest of the society(Vawter et al. 2010), which may result in the exclusion

of certain ethical principles.

In response to the debates, Pathak et al. summarize in their paper the challenges faced

by the priority system and propose a general theory of reserve design as a solution(Pathak

et al. 2020). The idea of a reserve system is not original, and the mechanism has been applied

in many other contexts such as deceased donor kidney allocation(Israni et al. 2014), college

admissions(Aygun and Bó 2020; Baswana et al. 2019), immigration visa allocation(Pathak,

Rees-Jones, and Sönmez 2020), and so on. As is explained in their paper, a reserve system

should have several other advantages. Firstly, the clear association between reserve categories

and ethical principles may help stakeholders achieve compromises. Aside from this, the

reserve categories are easy to interpret thus promoting transparency and fostering public

trust in settings that involve community engagement. Finally, since the resources are divided

into small pieces, the adjustment of the priority decision would be flexible(Pathak et al. 2020,

30).

Pathak et al. provides a lot of details about the reserve design and explains the mecha-

nism carefully, but they do not explain the potential benefits of the reserve system rigorously.

Neither does the paper provide any theoretical analysis nor conducts any case studies to illus-

trate the advantages. Moreover, the reserve system is not compared with the priority system



2

in a formalized way. Having observed these problems, this thesis provides supplementary

analysis for the topics that are not sufficiently discussed by Pathak et al.İn particular, I

model the reserve system as various games under different settings and provide mathemat-

ical proofs for the Nash equilibrium. In addition, my analysis is static and uses vaccine

allocation as examples. Vaccines can be allocated simultaneously, are fully consumed upon

allocation, and there is no immediate urgency for allocation thus is an application of the

proposed reserve system on a static basis(Pathak et al. 2020, 28). Vaccine allocation is also

a heated topic recently as the COVID-19 vaccines are authorized and start to be allocated

to the public.

This thesis is organized as follows. Section 2 provides a literature review, mainly ex-

plaining the theories and mechanisms of the reserve system and the priority system. Section

3 uses a simple example to demonstrate how the priority system and the reserve system work

in a perfect world where the ethical principles have been clearly specified and people report

their information truthfully. Next, Sections 4 and 5 analyze two potential advantages of

the reserve system using mathematical models and relevant game theories. The two advan-

tages are: (1) Preventing the public from misreporting their qualification, and (2) promoting

compromises among different stakeholders. The report concludes in Section 6.

2 Literature Review

This thesis serves as an extension of the paper from Pathak et al, focusing on the benefits

of the reserve system and comparing the reserve system with the priority system. To better

understand the concepts and arguments that appear in the thesis, I will introduce relevant

theories of the two allocation systems in this section.

The priority system

To implement a proper rationing system to handle a crisis, planners follow two steps

to design the rationing guidelines: 1) Articulating ethical principles and 2) determining an

allocation mechanism to operationalize the ethical principles. The most common allocation

mechanism used in the second step is the priority system, which allocates medical units to pa-

tients based on a single priority order that captures the articulated ethical principles(Pathak
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et al. 2020, 6). For certain medical resources such as ventilators and ICU beds, the priority

order is determined by a priority point system, a monotonic scoring function, which has

two forms: single-principle point system that is based on one ethical principle(Emanuel et

al. 2020), and multi-principle point system that is based on multiple ethical principles(White

et al. 2009; Lee Daugherty-Biddison et al. 2017). The ethical values are evaluated by a mono-

tonic function, and for each patient, their corresponding values will be added up to generate

a single number. In general, patients with lower total point scores have higher priority than

those with higher total point scores.

The reserve system

The essential idea of a reserve system is to divide the medical units into multiple seg-

ments referred to as reserve categories to represent certain ethical principles. Each category

follows its specific priority order in allocating medical resources. Based on the specific pri-

ority order in each category, a patient is either eligible or is ineligible to receive medical

resources from that category. A patient may be eligible for multiple categories but can only

be matched with one category in which he or she eventually obtains a medical unit.

In the reserve system, a matching means allocating each patient either to a category

in which he or she obtains a unit or an empty set in which the patient receives nothing.

According to the general theory of the reserve system, the matching should at least follow

three axioms: 1) Units are awarded only to eligible individuals, 2) no unit is wasted, and 3)

the units need to be allocated based on the specific priority order in each category. These

are the minimal requirements for the reserve system because one can see them being applied

to real-life allocation problems either explicitly or implicitly(Pathak et al. 2020, 12).

Planners can use a subset of the Individual Proposing Deferred Acceptance Algorithm

(DA)(Gale and Shapley 1962) named the Sequential Reserve Matching(SRM) to find the

qualified matching that complies with the three matching axioms described above. By the

SRM algorithm, the reserve categories are processed sequentially, and the category under

processing would reject patients according to the corresponding priority order. The patients

who are rejected from the previous categories would be allocated with units based on the

priority order in the next category. This process iterates until there are no rejections. The

resulting matching is referred to as the Sequential Reserve Matching.
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3 Simple Case Studies

This section first uses the example of vaccine allocation to explain the mechanisms of the

reserve system and two types of the priority system in perfect conditions. Perfect conditions

ensure the successful implementation of the allocation systems as designed, by requiring both

a comprise among stakeholders in articulating ethical values and the honesty of the public

in reporting qualification information.

Pathak et al. mention three aspects that their proposed reserve system has advantages

in. I will discuss the second and the third benefits in Sections 4 and 5 in detail, while this

section briefly discusses the first benefit that is the ability to solve the problem of leaving out

ethical values for the priority system. The reserve system always ensures the representation

of every pre-specified ethical value in the allocation results. This seems to be obvious as

planners can set up reserve categories for each ethical value and distribute medical units

accordingly. By contrast, due to the single linear order, the priority system may not properly

reflect incommensurable ethical principles and may neglect certain ethical values. However,

the multi-principle point system has an advantage in emphasizing the large distinctions and

undermining the small differences among individuals. In some cases, although there are

unrepresented ethical values, this feature of the multi-principle point system leads to be a

preferable medical rationing solution compared with that of the reserve system.

Background:

The tradition of vaccine allocation is to distribute influenza vaccines at local pharmacies

or healthcare providers on a first-come-first-serve basis1. The problem with the first-come-

first-serve allocation is that those who are less likely to be informed or those who have

inadequate transportation are at a disadvantage(Kinlaw and Levine 2007). Therefore, plan-

ners can adopt a disadvantaged reserve category that prioritizes those who live far from

medical centers to make sure people are treated equally.

Settings:

1. The priorities are based on the time of arrival. Those who arrive earlier have higher priority and
get vaccinated earlier than those who arrive later.
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There are four patients I = {i1, i2, i3, i4} and three identical and indivisible vaccines in

total to allocate. Each patient is assigned a score based on his or her priority. lower scores

are associated with higher priority and higher scores are associated with lower priority.

I require the allocation results to reflect two ethical principles. One is the arrival time

where the individual who comes earlier has higher priority. The other is the distance to

the hospital where the individual whose house is farther to the hospital has higher priority.

Since it is expected that the individuals who live closer would arrive earlier to the hospital,

I make up the scores in the two categories for each patient to show this relationship, and the

scores are summarized in Table 1:

Patients C1(Arrival T ime) C2(Distance to the Hospital)

i1 1 7
i2 2 4
i3 3 3
i4 4 1

Table 1

Case 1: Single-principle point system

In this case, the priority system is based on one ethical value: Arrival Time. According

to the corresponding scores, since patients i1, i2, i3 are those with the three lowest scores in

column C1, each of them get one vaccine unit, while patient i4 does not receive a vaccine.

There may be several types of vaccines to allocate, and each type only contains three

units. If the single-principle point system is followed, patient i4 would never have the chance

to receive any type of vaccine, being the person who lives farthest from the medical center.

This example demonstrates the problems lying in the single-principle point system that the

system sometimes fails to represent certain ethical principles in the allocation results.

Case 2: Multi-principle point system

Patients Sum of Scores

i1 8
i2 6
i3 6
i4 5

Table 2

Patients Sum of Scores

i1 8
i2 8.5
i3 6
i4 5

Table 3
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To implement this mechanism, the scores of both categories are added up for each

patient, and those who obtain the three lowest scores receive vaccine units. In this case,

patients i2, i3, i4 receive the medical resources. The results are shown in Table 2.

The multi-principle point system alleviates the problem of the first-come-first-serve al-

location, and patients who live far from the hospital have an opportunity to receive vaccine

units. However, the first-come-first-serve principle is not reflected in the results because

patient i1 who comes the earliest does not get a vaccine.

Now, let us consider the case that the differences of the C2 scores between patients i1

and i2 are smaller. As an example, holding other scores fixed, patient i2’s score in C2 is

changed from 4 to 6.5. The results are shown in Table 3. In this case, patients i1, i3, i4

receive units, and the multi-principle point system accommodates both ethical principles.

The first observation is that if the eligibilities of two patients in one category are similar,

deciding which patient has the higher priority is mainly dependent on other categories where

the differences in eligibility are large. Secondly, although in some conditions, the multi-

principle system does reflect every ethical principle, the problem of leaving out ethical values

still exists.

Case 2: Reserve System with Sequencing Matching

Suppose there are two categories C1 and C2 that represent the ethical principles "Arrival

time" and "Distance to the Hospital" respectively. Category C1 has one unit and C2 has two

units. Each Category follows the linear priority order according to the scores in Table 1.

Subcase 1: C1 is processed first

Steps Category Patients

1 C1 i1
2 C2 i4, i3

Table 4

Step1: Since patient i1 has the highest priority in category one, he or she receives a

vaccine.
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Step2: Next, category C2 is processed. Patients i4 and i3 have higher priorities than

others, so each of them obtains one vaccine unit. Since all three available units have been

allocated, patient i2 receives nothing. The results are shown in Table 4.

Subcase 2: C2 is processed first

Steps Category Patients

1 C2 i4, i3
2 C1 i1

Table 5

Following similar steps as for subcase 1, the allocation results are obtained and sum-

marized in Table 5. The final results are the same as the case when C1 is processed first, in

which patients i1, i3, i4 receive units but i2 receives nothing.

Compared with the two types of the priority system, the reserve system always accom-

modates both ethical principles thus mitigating the problem associated with the first-come-

first-serve allocation to some extent.

You can also observe that once the medical resource is scarce and the only two reserve

categories have exact opposite priority orders, the processing order of reserve categories

would not affect the final allocation outcome.

Discussion:

Patients C1(Lifecycle principle) C2(Save the most lives principle)

i1 1 5
i2 2 3
i3 3 2
i4 4 1

Table 6

From these examples, the reserve system with sequencing matching provides a solution

to the bias caused by the first-come-first-serve allocation, and it always reflects the two

ethical principles as long as the priority order in each category does not change. However,

you cannot jump to a conclusion directly, after all, the multiple-principle point system shows

advantages in its comprehensive consideration of individual differences.
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Let us consider another example: Holding other settings as before, the two ethical

principles are now changed to be the "Life-cycle Principle"(C1) and the "Save the most

lives" principle(C2), where the "Life-cycle Principle" prioritizes those who are young, and

the "Save the most lives" prioritizes those who are expected to have longer survival time. In

addition, the priority scores are updated and summarized in Table 6.

To implement the reserve system, C1 is allocated with one unit, and C2 is allocated with

two units. Moreover, since the "Save the most lives" principle is more important than the

other principle, I process the "Save the most lives" principle first. Then, the reserve system

with sequencing matching allocates vaccines to patients i1, i3, i4 no matter which category

is processed first. However, this result may not be what planners would want because when

the differences between ages are small, planners would like to save more lives instead thus

preferring ethically to allocate vaccines to patient i2 rather than i1. Since the multi-principle

point system distributes vaccines to patients i2, i3, i4, it provides a better allocation.

To summarize, this observation shows that there might be situations when the multi-

principle point system outperforms the reserve system, which may call for careful considera-

tion from planners before adopting the reserve system as a resolution to the priority system.

Furthermore, another idea incurred from this observation is to find out ways to incorporate

the benefits of the multi-principle point system into the reserve system or inversely.

At this stage, you should be clear about how to implement the reserve system and two

types of priority system and understand how the reserve system reflects all ethical values

in the allocation results, under perfect conditions. However, the perfect conditions are not

always satisfied in reality because people may find ways to misreport their information, and

the advisory committee may find it hard to reach a compromise. Section 4 and Section 5

discuss how the allocation systems deal with these two problems. Through the comparison,

you can form a better understanding of whether the reserve system has advantages over the

priority system with respect to these two aspects.
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4 Advantage 1: Preventing people from misreporting

This section provides insights into how the reserve system and the priority system deals

with information fabrication. Many states in the U.S. adopt the Honor System, a system that

requires people to report their eligibility, in rationing the COVID-19 vaccines23. The Honor

system makes cheating easy because it entirely relies on the honesty of the public. On the one

hand, cheating is harmful because it violates the equity principle, gives rise to complaints,

and may cause damages to the order of allocation. On the other hand, monitoring cheating

is costly especially in a crisis in which it is more important to make sure people are getting

vaccinated quickly than to spend time figuring out the value of each individual. Hence, it

is necessary for policymakers to weigh the pros and cons of putting efforts into cheating

reduction. An allocation system that prevents cheating at a relatively low cost is preferred.

4.1 Reserve system: number of units reserved for categories

In the reserve system, an individual meets either one or more categories of qualifications.

In the former case, if a person believes that he is more likely to benefit from another category,

he may cheat. In the latter case, people make choices on the category they would like to

receive medical units from, but it is possible for them to choose a category that has no

unit left for them based on the priority order. Since public decisions are closely related to

the number of units in the reserve categories, decision-makers should formulate appropriate

strategies to allocate units to each reserve category so as to encourage truth-telling at a low

cost.

When the reserve system is implemented, patients participate in a strategic game where

they make choices based on their beliefs. This part analyzes two cases of such a game. The

first scenario is built on the assumption that all patients are eligible for one and only one

category. The second case assumes that all patients meet the qualifications for multiple

2. How People Are Jumping The COVID-19 Vaccine Line, https://www.npr.org/sections/health-
shots/2021/02/09/965841419/does-loose-enforcement-of-vaccine-eligibility-rules-encourage-line-jumping

3. Who Should Get The Coronavirus Vaccine? For Some States, The Honor Sys-
tem Rules, https://www.npr.org/2021/01/16/957593577/who-should-get-the-coronavirus-vaccine-for-some-
states-the-honor-system-rules

https://www.npr.org/sections/health-shots/2021/02/09/965841419/does-loose-enforcement-of-vaccine-eligibility-rules-encourage-line-jumping
https://www.npr.org/sections/health-shots/2021/02/09/965841419/does-loose-enforcement-of-vaccine-eligibility-rules-encourage-line-jumping
https://www.npr.org/2021/01/16/957593577/who-should-get-the-coronavirus-vaccine-for-some-states-the-honor-system-rules
https://www.npr.org/2021/01/16/957593577/who-should-get-the-coronavirus-vaccine-for-some-states-the-honor-system-rules
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categories. I will look for Nash equilibrium for each of these two cases in an effort to find

out the conditions, under which players are willing to report their information truthfully.

In addition, for simplicity, the general assumptions for the analysis are that (1) players are

all rational, (2) players choose their strategies independently, and (3) there are two reserve

categories A and B.

Based on the equilibrium I find, for the first case, my results suggest planners to allocate

units proportionally to each category according to the corresponding number of eligible

individuals with respect to the entire population. In the second case, any method works

because people are more likely to choose categories with more units than those with fewer

units, which leads to a balance that each individual has the same probability of getting

medical resources.

4.1.1 Each patient is qualified for only one category

Game settings: There are N players, and H identical indivisible medical units to allocate,

where H < N and N, H ∈ N+. There are two reserve categories A and B. The number of

units that are allocated to categories A and B are δ ·H and (1− δ) ·H respectively, where

δ ∈ (0, 1). Players are either type A or type B but they can decide which category they

would like to report, so Si = {A, B}, for i ∈ {1, ..., N}. If there are units left in the category

they choose, the players receive units accordingly; otherwise, the players receive nothing.

For each player, the payoff of obtaining one unit is 1 and is 0 otherwise. In addition,

all players know the proportion of eligible players for category A is p relative to the entire

population, so the proportion for category B is (1− p), where p ∈ (0, 1).

Theorem 1. Under the settings of this game,

• If δ = p, truth-telling is a Nash equilibrium.

• If δ > p

– If N ≤ 1−δ
δ−p , truth-telling is a Nash equilibrium.

– If N > 1−δ
δ−p , there is a pure strategy Nash equilibrium in which type A players and

(1− δ) ·N type B players report truthfully; (δ − p) ·N type B players report being

type A.
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• If δ < p

– If N ≤ δ
p−δ , truth-telling is a Nash equilibrium.

– If N > δ
p−δ , there is a pure strategy Nash equilibrium in which type B players and

δ ·N type A players report truthfully; (p − δ) ·N type A players report being type

B.

Note: If truth-telling is a Nash equilibrium, all the players report their true types.

Proof.

• Player i is a random type A player, and player j is a random type B player.

• The proof first shows that if δ = p, truth-telling is a pure strategy Nash equilibrium.

Suppose truth-telling is a pure strategy Nash equilibrium when δ = p. If this assumption

is correct, no one has the motivations to deviate unilaterally from being honest.

Taking that other players are honest in reporting their types, the payoff for player i is:

ui(A, s−i) =

1, with probability H·δ
N ·p

0, with probability 1− H·δ
N ·p

ui(B, s−i) =

1, with probability H·(1−δ)
(1−p)·N+1

0, with probability 1− H·(1−δ)
(1−p)·N+1

Therefore, if δ = p, the expected payoff for player i is:

EUi(A) =
H

N
EUi(B) =

H · (1− p)
(1− p) ·N + 1

Since EUi(A) − EUi(B) > 0, player i would not deviate from reporting his or her true

types. The same is true for other type A players.

Similarly, taking that other players are honest in reporting their types, the payoff for

player j is:

uj(A, s−j) =

1, with probability H·δ
(N ·p)+1

0, with probability 1− H·δ
(N ·p)+1

uj(B, s−j) =

1, with probability H·(1−δ)
N ·(1−p)

0, with probability 1− H·(1−δ)
N ·(1−p)
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Therefore, if δ = p, the expected payoff for player j is:

EUj(A) =
H · p

(N · p) + 1
EUj(B) =

H

N

Since EUj(B) − EUj(B) > 0, player j would not deviate from reporting his or her true

types. The same is true for other type B players.

Therefore, since no player can gain by a unilateral change of strategy if the others remain

unchanged, this is a pure strategy Nash equilibrium.

• Secondly, I find the Nash equilibrium when δ > p.

When δ > p, the difference of player i’s expected payoff is:

EUi(A)− EUi(B) =
H · δ
N · p

− H · (1− δ)
N · (1− p) + 1

>
H · δ
N · p

− H · (1− δ)
N · (1− p)

=
H · (δ − p)
N · p · (1− p)

> 0

Hence, type A players would not want to deviate from truth-telling. However, when δ > p,

the difference of player j’s expected payoff is

EUj(A)− EUj(B) =
H · δ

N · p+ 1
− H · (1− δ)
N · (1− p)

=
H · (N · (δ − p) + δ − 1)

N · (N · p+ 1) · (1− p)

⇒

EUj(A)− EUj(B) > 0 if N >
1− δ
δ − p

EUj(A)− EUj(B) ≤ 0 if N ≤ 1− δ
δ − p

The larger the difference between δ and p, and the smaller the difference between δ and

1, types B players will be more likely to deviate and to report being type A.

This finding makes sense intuitively because if δ− p is small, the increase in the expected

payoff from declaring type A is small, so only if the population size is large enough,

the increase in the expected payoff is not offset by the increase in the reported type A

population.

Since the population size is usually big enough, EUj(A)−EUj(B) > 0 is the common case

in practice, in which type B players would like to cheat. As more and more type B players
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report being type A, the observed p increases. When (δ − p) · N types B players cheat,

no player would want to deviate unilaterally, which leads to a new Nash equilibrium.

• By following the same logic, one can analyze the case when δ < p. In this case,

EUj(A)− EUj(B) =
H · δ

N · p+ 1
− H · (1− δ)

(1− p) ·N
<
H · δ
N · p

− H · (1− δ)
(1− p) ·N

=
H · (δ − p)
N · p · (1− p)

< 0

EUi(A)− EUi(B) =
H · δ
N · p

− H · (1− δ)
(1− p) ·N + 1

=
H · (N · (δ − p) + δ)

N · (N · (1− p) + 1) · p

⇒

EUi(A)− EUi(B) ≥ 0 if N ≤ δ

p− δ

EUi(A)− EUi(B) < 0 if N >
δ

p− δ

Type B players would not deviate from truth-telling. In addition, since the population

size is usually big enough, EUi(A)−EUi(B) < 0 is the common case in practice, in which

type A players would like to cheat. As more and more type A players report being type

B, the observed p decreases. When (p − δ) · N types A players cheat, no player would

want to deviate unilaterally, which leads to a new Nash equilibrium.

QED

4.1.2 Each patient is qualified for both categories

The general case

Game settings: There are N players, and H identical indivisible medical units to allocate,

where H < N and N,H ∈ N+ . There are two reserve categories A and B. The number of

units that are allocated to categories A and B are m and n respectively, where m,n ∈ N+

and m + n = H. Each player is eligible for both categories. Players decide which category

they would like to report, so Si = {A, B}, for i ∈ {1, ..., N}. If there are units left in the

category they choose, the players receive units accordingly; otherwise, the players receive

nothing. For each player, the payoff of obtaining one unit is 1 and is 0 otherwise. Every

player knows that all the players are eligible for both groups.
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Theorem 2. Under the settings of this game, there is a symmetric mixed strategy Nash equi-

librium in which each player selects category A with a probability of α∗ and selects category

B with a probability of (1−α∗), where α∗ ∈ [0, 1]. In this case, one can always find a unique

α∗ that is the only one solution of the equation:

m−1∑
k=0

(
N − 1

k

)
· αk · (1− α)N−1−k =

n−1∑
k=0

(
N − 1

k

)
· (1− α)k · αN−1−k

Proof.

• Let us consider a random player i, taking as given other players’ strategies. The payoff

for player i is:

ui(A, s−i) =

1, if m−
∑N

j 6=i,j=1 11{sj = A} ≥ 1

0, otherwise

ui(B, s−i) =

1, if n−
∑N

j 6=i,j=1 11{sj = B} ≥ 1

0, otherwise

• The aim is to find a symmetric Nash equilibrium in which players select A with a proba-

bility of α and select B with a probability of (1− α), where α ∈ [0, 1]

Expected payoff of choosing A:

Let X be a random variable, and X is the number of times A occurs in N − 1 trial. The

trials are independent of each other, and the probability that A occurs in each trial should

be α. Therefore, X ∼ Binomial(N − 1, α). Then,

P ((m−
N∑

j 6=i,j=1

11{sj = A}) ≥ 1) = P (X < m) =
m−1∑
k=0

(
N − 1

k

)
· αk · (1− α)N−1−k

EUi(A) =
m−1∑
k=0

(
N − 1

k

)
· αk · (1− α)N−1−k

Expected payoff of choosing B:
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Similarly, the expected payoff of choosing B can be obtained following the same logic:

EUi(B) =
n−1∑
k=0

(
N − 1

k

)
· (1− α)k · αN−1−k

Then, EUi(A) = EUi(B) implies that:

m−1∑
k=0

(
N − 1

k

)
· αk · (1− α)N−1−k =

n−1∑
k=0

(
N − 1

k

)
· (1− α)k · αN−1−k

With respect to α, the function on the left-hand side is continuous and monotone decreas-

ing, while the function on the right-hand side is continuous and monotone increasing. The

ranges of both functions are [0, 1]. Therefore, by the Intermediate value theorem, one can

always find a unique value α∗ such that the equation above holds.

• Since all other players are in the same conditions as player i, the analysis of other players

is the same as that of player i. Hence, the α∗ that satisfies EUi(A) = EUi(B) is the same

for i ∈ {1, ..., N}. Such an α∗ leads to a symmetric mixed strategy Nash equilibrium in

which each player selects category A with a probability of α∗ and selects category B with

a probability of (1− α∗).

QED

A simple case as an example

The settings are the same as those for the general case in Section 4.1.2. Let m = 2,

n = 3, and N = 6, then:

(1− α)5 + 5 · α · (1− α)4 = α5 + 5 · (1− α) · α4 + 10 · (1− α)2 · α3

⇔

α ≈ 0.40563

This means that there is a symmetric mixed strategy Nash equilibrium in which each

player selects category A with a probability of 0.40563 and selects category B with a proba-

bility of 0.59437, The result makes sense intuitively because if category A is allocated with



16

fewer units compared with category B, a general player is less likely to choose category A,

given that all players are eligible for both categories.

Discussion:

In real life, there are people eligible for one category and also others who are eligible

for multiple categories. I simplify the situation by assuming that there are only two reserve

categories. Then, based on Theorem 1, to avoid cheating, the proportion of medical units

distributed to each reserve category should be equal to the proportion of eligible players of

that category with respect to the whole population size. Based on Theorem 2, those who

are eligible for both categories will adjust their strategy accordingly based on the number of

units reserved for each category, so they will not affect the Nash equilibrium of truth-telling

found in Theorem 1.

Accordingly, if planners adopt the reserve system, there is a strategy to prevent cheating

in medical rationing. The first step is to divide the people into two groups. Group one

consists of those who are qualified for only one category, and group two is made up of those

eligible for both categories. The second step is to allocate each reserve category with medical

units according to the corresponding eligible population proportion in group one.

The implementation of this strategy requires planners to distinguish the two groups

of people and to figure out the corresponding population proportion of each category in

group one, which are not easy especially under emergency scenarios such as the COVID-19

pandemic. In the next section, I will analyze truth-telling for the priority system so as to

compare the performances of both systems concerning the honesty incentive mechanism.

4.2 Priority system: a truth-telling analysis

In this section, I model the priority system based on the COVID-19 vaccine distribution

plan recommended by the Advisory Committee on Immunization Practices (ACIP). The aim

is to find the Nash equilibrium for the two strategic models with and without the introduction

of punishment.

After the Food and Drug Administration (FDA) authorizes two types of COVID-19

vaccine on December 20th, 2020, ACIP updated the recommendations for which groups of

individuals should be offered the vaccine first when there is a shortage in vaccine supplies.
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Taking into consideration the scientific evidence regarding COVID-19 epidemiology, ethical

principles, and vaccination program implementation considerations, the team divides the

allocation into the following phases: Phase 1a: health care personnel and long-term care

facility residents; Phase 1b: frontline essential workers (non–health care workers) and persons

aged 75 years; Phase 1c: persons aged 65-74 years and persons aged 16-64 years with medical

conditions that increase the risk for severe COVID-19; Phase 2: all other persons aged 16

years not already recommended for vaccination in Phases 1a, 1b, or 1c(Dooling 2021).

Instead of viewing the process as different phases, I model the system as placing indi-

viduals into tiers with varying priority order, and individuals in the same tier have equal

priority. In this setting, each patient cannot be in more than one tier at a time. In addi-

tion, the general assumptions for the models in this section are: (1) Players are all rational,

(2) players choose their strategies independently, and (3) there are two tiers A and B. My

results suggest that people in tier B always have incentives to cheat unless supervision and

punishment are introduced.

4.2.1 General priority system without punishment

The general case

Game settings:

There are N players and H identical indivisible medical units to allocate, where H < N

and N,H ∈ N+. There are two types of players and two tiers: N1 type A players eligible

for tier A, and N2 type B players eligible for tier B, where N1 +N2 = N and N1, N2 ∈ N+.

Tier A has a higher priority than tier B, and players have equal priority within each tier.

Players decide which category to report, so Si = {A, B}, for i ∈ {1, ..., N}. Players can

report being in either tier but cannot report being in both. Since when H ≤ N1, players

will always cheat and report being in tier A, I require H > N1 to exclude this trivial case

from the model. For each player, the payoff of obtaining one unit is 1 and is 0 otherwise. In

addition, all players know the number of eligible players in each tier.

Theorem 3. Under the settings of this game, there is a unique pure strategy Nash equilibrium

in which all players report being in tier A.
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Proof.

According to my game settings in this section, whatever tier a player is eligible for, that

person will be viewed as the type he or she reports, so type A players and type B players

are essentially faced with the same situation. Therefore, I analyze the decision of a random

player l who can be either type A or type B.

Let θ be the proportion of players other than l who declare tier A, so θ ∈ [0, 1].

- If θ ∈ [0, H
N−1), the expected payoffs are EUl(A) = 1 and and EUl(B) = H−θ·(N−1)

N−θ·(N−1) . Since

EUl(A) > EUl(B), reporting being in tier A is more profitable than telling the truth.

- If θ ∈ [ H
N−1 , 1], the expected payoffs are EUl(A) = H

θ·(N−1)+1
, and EUl(B) = 0. Since

EUl(A) > EUl(B), reporting being in tier A is more profitable than telling the truth.

Accordingly, for player l, since whatever strategies of other players, the expected payoff

of declaring tier A is always greater than that of declaring tier B, choosing tier B is strictly

dominated by choosing tier A. In fact, since players have two strategies, declaring tier A is a

strictly dominant strategy for them. Hence, there is a unique pure strategy Nash equilibrium

in which all the players choose to report being in tier A.

QED

4.2.2 Priority system with Punishment introduced

The general case

Game settings: The settings are the same as the settings in Section 4.2.1 in addition to

one extra condition that is: If a type B player report being in tier A, he or she will be caught

with a probability of ω (ω ∈ [0, 1]) and has no chance to receive medical resources at the

current point in time.

Theorem 4. Under the settings of this game,

• If ω ∈ [1− 1
N2
· (H −N1), 1], truth-telling is a pure strategy Nash equilibrium.
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• If ω ∈ [0, ω∗], there is a pure strategy Nash equilibrium in which all the players report being

in tier A. One can always find a unique ω∗ that is the only one solution of the equation:

N2−1∑
k=0

min{1, H

N − k
} ·
(
N2 − 1

k

)
· ωk · (1− ω)N2−k =

N2−1∑
k=N−H

(
N2 − 1

k

)
· ωk · (1− ω)N2−1−k

• If ω ∈ [ω∗, 1− 1
N2
·(H−N1)], there are Nash Equilibria in which type A players are honest,

and each type B player reports being in tier A with a probability of α∗ and report being in

tier B with a probability of (1− α∗), where α∗ ∈ [0, 1]. In this case, one can find at least

one α∗ that are solutions to the equation:

·
N2−1∑
k=0

(
N2 − 1

k

)
· αk · (1− α)N2−1−k · [fA(k) · (1− ω)− fB(k)] = 0

where

fA(k) =
k∑
r=0

min{1, H

N1 + 1 + k − r
} ·
(
k

r

)
· ωr · (1− ω)k−r

fB(k) =
k∑
r=0

min{1, H −N1 − (k − r)
N2 − k

} · 11{H −N1 − (k − r)
N2 − k

≥ 0} ·
(
k

r

)
· ωr · (1− ω)k−r

Proof.

• Firstly, I show that truth-telling is a pure strategy Nash equilibrium when ω ≥ 1 − 1
N2
·

(H −N1).

Suppose truth-telling is a Nash equilibrium. If this assumption is correct, in this scenario,

players have no motivation to deviate unilaterally from telling the truth.

- In this case, type A players would not want to deviate unilaterally because they un-

dertake a risk if they cheat but are secured to receive medical resources by reporting

the truth.

- For a random type B player j, the expected payoff of choosing B is equal to or greater

than the expected payoff of choosing A. Player j’s payoff is:
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uj(A, s−j) =

1, with probability 1− ω

0, with probability ω
uj(B, s−j) =

1, with probability H−N1

N2

0, with probability N−H
N2

To prevent player j from deviating from truth-telling, the condition below is required:

EUj(A)− EUj(B) = [1 · (1− ω) + 0 · ω]− [1 · H −N1

N2

+ 0 · N −H
N2

] ≤ 0

⇔

ω ≥ 1− 1

N2

· (H −N1)

Therefore, if ω ≥ 1 − 1
N2
· (H − N1), truth-telling is a Nash equilibrium. Otherwise,

reporting tier A is profitable for type B players, so they have the motivations to deviate

unilaterally.

This result makes sense intuitively. Holding other variables constant, when the number of

type B players (N2) increases, more supervision is required to avoid cheating. In addition,

holding everything else fixed, when the production of medical resources (H) increases, the

required supervision decreases.

• Secondly, I prove that when ω is too small, the Nash equilibrium strategy profile is that

all the players report being in tier A.

Assume there is such a pure strategy Nash equilibrium. If this assumption is correct:

- For a random type A player i,

EUi(A)− EUi(B) =

N2∑
k=0

min{1, H

N − k
} ·
(
N2

k

)
· ωk · (1− ω)N2−k −

N2∑
k=N−H

(
N2

k

)
· ωk · (1− ω)N2−k+1 =

N−H−1∑
k=0

H

N − k
·
(
N2

k

)
· ωk · (1− ω)N2−k +

N2∑
k=N−H

(
N2

k

)
· ωk+1 · (1− ω)N2−k > 0

Therefore, type A players have no incentive to deviate unilaterally from truth-telling.

- For a random type B player j, the expected payoff of choosing A is equal to or greater

than the expected payoff of choosing B.
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Therefore, taking as given other players’ strategies, to prevent player j from deviating

from choosing A, the condition below is required:

EUj(A)− EUj(B) =

N2−1∑
k=0

min{1, H

N − k
} ·
(
N2 − 1

k

)
· ωk · (1− ω)N2−k−

N2−1∑
k=N−H

(
N2 − 1

k

)
· ωk · (1− ω)N2−1−k ≥ 0

⇔

ω ≤ ω∗

where ω∗ is the unique solution of the equation :

N2−1∑
k=0

min{1, H

N − k
} ·
(
N2 − 1

k

)
· ωk · (1− ω)N2−k =

N2−1∑
k=N−H

(
N2 − 1

k

)
· ωk · (1− ω)N2−1−k

With respect to ω, EUj(A) is continuous and monotone decreasing, and EUj(B) is con-

tinuous and monotone increasing. Additionally, when ω = 0, EUj(A) ≥ 0 = EUj(B),

and when ω = 1, EUj(A) ≤ 1 = EUj(B). Therefore, by the Intermediate value theo-

rem, one can always find a unique value of ω∗ such that EUj(A) = EUj(B). In addition,

when ω ≤ ω∗, EUj(A) ≥ EUj(B); when ω ≥ ω∗, EUj(A) ≤ EUj(B).

Therefore, if ω ≤ ω∗, the Nash equilibrium is the strategy profile that all players report

being in tier A. This result makes sense intuitively. When the probability of being caught

is too small, type B players can still benefit from misreporting.

• Thirdly, if ω ∈ [ω∗, 1− 1
N2
· (H −N1)]:

- Assuming that all type A players are honest, I claim that there is a symmetric mixed

strategy Nash equilibrium for type B players in which each player cheat with a proba-

bility of α, where α ∈ [0, 1].

To begin with, a symmetric mixed strategy Nash equilibrium always exists in my game

settings. According to the classic paper of Nash, every finite symmetric game has a

symmetric Nash equilibrium(Nash 1951). My game is a finite symmetric game. On the
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one hand, since all medical resources are ultimately distributed to players, this game

is finite. On the other hand, the payoff functions are the same for all players, so it

is also symmetric. Hence, there is always a symmetric Nash equilibrium of my game.

Additionally, from the proof above, I have shown that when ω ∈ [ω∗, 1 − 1
N2
· (H −

N1)], there is no symmetric pure strategy Nash equilibrium so a mixed strategy Nash

equilibrium must exist.

In such a symmetric mixed strategy Nash equilibrium, no type B players would want

to deviate unilaterally, so the condition below needs to be satisfied for a random type

B player j:

EUj(A)− EUj(B) = 0

⇔

·
N2−1∑
k=0

(
N2 − 1

k

)
· αk · (1− α)N2−1−k · [fA(k) · (1− ω)− fB(k)] = 0

where

fA(k) =
k∑
r=0

min{1, H

N1 + 1 + k − r
} ·
(
k

r

)
· ωr · (1− ω)k−r

fB(k) =
k∑
r=0

min{1, H −N1 − (k − r)
N2 − k

} · 11{H −N1 − (k − r)
N2 − k

≥ 0} ·
(
k

r

)
· ωr · (1− ω)k−r

Since a symmetric mixed strategy Nash equilibrium always exist, given certain values

of N1, N2, H, and ω (ω ∈ [ω∗, 1− 1
N2
· (H −N1)]), there is at least one α∗ (α∗ ∈ [0, 1])

that satisfies the equation above.

However, it is not a trivial task to discuss the monotonicity of "EUj(A) − EUj(B)"

and to study how α∗ changes as ω varies. In particular, I find it difficult to determine

the sign of "fA(k) · (1−ω)−fB(k)". Therefore, further research is needed to rigorously

analyze the Nash equlibrium. In this section, I use a simple example to study these

questions numerically through simulation by fixing values for parameters N1, N2, and

H.

- Next, given that each type B player cheats with a probability of α∗, I will show that

there is no motivation for type A players to deviate unilaterally from telling the truth.
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If each type B player cheats with a probability of α∗, the probability that q (q ∈ Z+ and

q ∈ [0, N2]) type B players cheat is a function of α∗: pq(α∗) =
(
N2

q

)
· (α∗)q · (1−α∗)N2−q.

When q type B players cheat, given that other type A players are honest, I denote the

corresponding expected payoffs of a random type A player i by EU q
i (A) and EU

q
i (B).

Accordingly,

EUi(A)− EUi(B) =

N2∑
q=0

pq(α
∗) · (EU q

i (A)− EU
q
i (B))

* If q ∈ [0, H −N1), EU q
i (A)− EU

q
i (B) = 1− (1− ω) = ω > 0

* If q ∈ [H −N1, N2],

EU q
i (A)− EU

q
i (B) =

N1+q−H−1∑
k=0

H

N1 + q − k
·
(
q

k

)
· ωk · (1− ω)q−k+

q∑
k=N1+q−H

min{1, k − (N1 + q −H − 1)

N2 − q + 1
} ·
(
q

k

)
· ωk+1 · (1− ω)q−k+

q∑
k=N1+q−H

(1−min{1, k − (N1 + q −H − 1)

N2 − q + 1
}) ·

(
q

k

)
· ωk · (1− ω)q−k ≥ 0

Therefore, ∀ q ∈ Z+ and q ∈ [0, N2], EU q
i (A) − EU q

i (B) ≥ 0. Hence, EUi(A) −

EUi(B) ≥ 0. In this case, type A players have no incentive to deviate unilaterally

from truth-telling.

- In summary, when ω ∈ [ω∗, 1− 1
N2
· (H −N1)], there are Nash Equilibria in which type

A players are honest, and each type B player reports being in tier A with a probability

of α∗, where α∗ ∈ [0, 1].

QED

The simplest case as an example

Game settings: The settings are the same as those for the general case in Section 4.2.2.

Let N = 3, H = 2, N1 = 1, and N2 = 2, so Si = {A, B}, for i ∈ {1, 2, 3}.
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Proposition 4.1. Under the settings of this game,

• If ω ∈ [0.5, 1], truth-telling is a pure strategy Nash equilibrium

• If ω ∈ [0, 0.4495], there is a pure strategy Nash equilibrium in which all the type

B players report being in tier A.

• If ω ∈ [0.4495, 0.5], there is a Nash equilibrium in which type A players are honest,

and each type B player reports being in tier A with a probability of α∗, where

α∗ ∈ [0, 1]. In this case, one can find a unique α∗ that is the solution to the

equation:

α∗(ω) =
ω − 1

2
1
3
· (ω + 2) · (1− ω)− 1

2

Proof.

- For the type A player, declaring tier A is a weakly dominant strategy because the expected

payoff of choosing tier A is always equal to or higher than that of choosing tier B regardless

of the strategies of other players. Specifically:

(1) Type B players are honest: EUA(A)− EUA(B) = 1− 2
3
· (1− ω) > 0

(2) One type B player cheat, and the other one is honest:

* If 0 type B player is caught: EUA(A)− EUA(B) = 1
2
− 1

2
· (1− ω) ≥ 0

* If 1 type B player is caught: EUA(A)− EUA(B) = 1− (1− ω) ≥ 0

(3) Both type B players cheat:

* If 0 type B player is caught: EUA(A)− EUA(B) = 2
3
− 0 > 0

* If 1 type B player is caught: EUA(A)− EUA(B) = 1− (1− ω) ≥ 0

* If 2 type B players are caught: EUA(A)− EUA(B) = 1− (1− ω) ≥ 0

Therefore, it is plausible to assume that the type A player is always honest.
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Player B2

A B

Player B1
A (ω · (1− ω) + 2

3
· (1− ω)2, ω · (1− ω) + 2

3
· (1− ω)2) (1− ω, ω)

B (ω, 1− ω) (1
2
, 1
2
)

ω Pure Strategy Nash Equilibria

[0, 0.4495) (A, A)

0.4495 (A, A), (A, B), (B, A)

(0.4495, 0.5) (A, B), (B, A)

0.5 (A, B), (B, A), (B, B)

(0.5, 1] (B, B)

- For type B players, given that the type A player is honest, I generate a matrix represen-

tation for the game between the two type B players:

In addition, using α to denote the probability of misreporting for player B2, to find the

symmetric mixed strategy Nash equilibrium when ω ∈ [0.4495, 0.5], I require:

EUB1(A)− EUB1(B) = 0

⇔

α · [ω · (1− ω) + 2

3
· (1− ω)2] + (1− α) · (1− ω)− [ω · α +

1

2
· (1− α)] = 0

⇔

α∗(ω) =
ω − 1

2
1
3
· (ω + 2) · (1− ω)− 1

2

There is a mixed strategy Nash equilibrium in which each player cheat with a probability

of α∗(ω). Moreover, α∗(ω) is monotone decreasing when ω ∈ [0.4495, 0.5](see details in

Figure 1).

In addition, Figure 2 shows how "EUB1(A)−EUB1(B)" changes as α varies when setting

ω in different ranges. You can observe from the plots that:

(1) If ω ∈ [0.5, 1], EUB1(A)− EUB1(B) ≤ 0.

(2) If ω ∈ [0, 0.4495], EUB1(A)− EUB1(B) ≥ 0.
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Figure 1: The variation of α∗ over different values of ω

(3) If ω ∈ [0.4495, 0.5], there is always one unique α∗(α∗ ∈ [0, 1]) such that EUB1(A)−

EUB1(B) = 0

(4) Holding α constant, as ω increases, "EUB1(A)− EUB1(B)" decreases.

These observations imply that when ω ∈ [0.4495, 0.5], as supervision becomes more strict

(i.e. as ω increases), with the same strategy, the profits of cheating become smaller and

smaller, so type B players are less likely to cheat(i.e. α∗ decreases). When the supervision

is strict enough(i.e. ω ∈ [0.5, 1]), for type B players, being honest is always more profitable

than cheating. Conversely, when the supervision is loose enough(i.e. ω ∈ [0, 0.4495]), for

type B players, cheating is always more profitable than being honest.

These results are consistent with Theorem 4.

QED

Discussion:

The assumption of two tiers is applicable in real life. The COVID-19 vaccine allocation

can be used as an example. At a point in time, the four tiers can be further categorized into

two groups, which are viewed as the two big tiers as assumed in my model. The first group

contains tiers with higher priority, and individuals who are eligible in these tiers are secured
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Figure 2: The variation of the difference in expected payoffs over different values of α, given
ω in certain ranges

to receive a vaccine unit. The rest of the tiers are in the second group in which people have a

chance but are not secured to obtain vaccines. In the early stage of vaccine allocation when

there is a severe shortage, the first group is tier 1a, and the second group contains the other
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three tiers. In a later stage when the production of COVID-19 vaccine increases, tier 1a, 1b,

1c are in the first group, and tier 2 is in group two.

According to Theorem 3 and 4, the priority system prevents cheating only with adequate

supervision, which costs time and money. Moreover, planners can control the amount of

cheating by adjusting the level of supervision. Therefore, implementing the priority system

with punishment tends to be more flexible than adopting the cheating-preventing strategy

for the reserve system. Furthermore, it is also possible that simply announcing the adoption

of a punishment without strict implementation would reduce cheating because the public is

not always fully rational, though this idea still needs to be rigorously justified.

5 Advantage 2: Helping people to reach an agreement

This section analyzes the decision-making process of policymakers by dividing the pro-

cess into two phases: personal decision making and negotiation. I will compare the reserve

system and the priority system to figure out which mechanism has the lower cost in reaching

a compromise.

For medical rationing, there are two main entities: Policymakers who specify ethical

values and design distribution guidelines, and the public who participate in the distribution

and report their qualifications. Previous sections analyze the behaviors of the public, ex-

amining the conditions in which misreporting can be prevented. However, the analysis does

not consider the behaviors of the policymakers, and it assumes implicitly that there is an

agreement among stakeholders in articulating the priority order of ethical values.

In fact, figuring out and sorting the ethical values to represent in allocation results

is tricky, and a comprise is difficult to reach. Although in most cases, policymakers are

able to respond in time and provide advice for rationing, their recommendations are not

always optimal. For example, there are debates on whether to prioritize essential personnel.

Those who against this idea worry that the prioritization may harm the rights of other
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groups(Vawter et al. 2010)4. Some states choose not to implement it, and others give vague

instruction for the prioritization5. Essentially, policymakers make satisfactory decisions but

not optimal ones in an emergency.

5.1 Individual decision-making

I first consider how a member of the advisory committee makes decisions, and I take

the paper written by Kőszegi and Matějka as a reference. In this recently published paper,

the authors formulate a theory for the idea that mental budgeting simplifies the complex

decision process in multi-product consumption(Kőszegi and Matějka 2020).

Mental budgeting, or mental accounting, is named by Richard H. Thaler in 1999, which

describes the process that people budget money into mental accounts for different categories

of expenditures(Thaler 1999). According to Kőszegi and Matějka, there are two main ex-

planations for mental accounting. The more developed explanation states that people make

mental budgets for self-control purposes such as mitigating over-consumption(Shefrin and

Thaler 1988; Koch and Nafziger 2016). Another explanation is that mental budgeting makes

it easier for people to make choices when optimization is not feasible(Zhang and Sussman

2018). The paper from Kőszegi and Matějka is in accordance with the latter explanation

and formalizes the categorization and simplification mechanisms of mental budgeting in the

context of consumption, assuming a person’s attention is costly as well as flexible.

The decision-making process of distributing medical units to people based on ethical

values is analogous to spending money on different products based on preferences, if the

medical units are viewed as money, and the patients are viewed as products with distinct

characteristics. The relative preference of products can be treated as the priority order of

4. New York State Department of Health and New York State Task Force on Life and the
Law Update Ventilator Allocation Guidelines, https://www.health.ny.gov/press/releases/2015/2015-11-
25_ventilator_allocation_guidelines.htm

5. COVID-19 Addendum: Allocation of Scarce Resources in Acute Care Facilities Recommended
for Approval by State Disaster Medical Advisory Committee (SDMAC), http://azpha.wildapricot.org/
resources/covid-19-addendum.pdf

https : / / www . health . ny . gov / press / releases / 2015 / 2015 - 11 -25_ventilator_allocation_guidelines.htm
https : / / www . health . ny . gov / press / releases / 2015 / 2015 - 11 -25_ventilator_allocation_guidelines.htm
http://azpha.wildapricot.org/resources/covid-19-addendum.pdf
http://azpha.wildapricot.org/resources/covid-19-addendum.pdf
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ethical principles. Therefore, the theories and findings developed in the literature for mental

accounting can be mapped to the medical resource allocation problem.

The Reserve System:

The reserve system simplifies the thinking process of an individual policymaker by guiding

him (or her) to create mental accounts for medical resources. To demonstrate this idea,

the first step is to show that the mechanism of medical rationing matches the settings

and conditions of the models introduced in Kőszegi and Matějka’s paper. According to

proposition 3 of the paper, in the context that goods belonging to the same category are

better substitutes with each other than for goods in other categories, an agent’s optimal

information acquisition is to have a fixed mental budget for each category, given the

attention cost is sufficiently high(Kőszegi and Matějka 2020, 15).

Before discussing optimal information acquisition, it is essential to understand what kind

of information can be acquired. In the multi-product consumption case, people observe

information about their taste for one good or the relative or total taste for several goods.

Analogously, in medical rationing, advisory committee members acquire information about

their beliefs concerning the priority for one ethical value or the relative priority for several

ethical values. When the attention cost is high such as in a crisis situation, it becomes

impossible for planners to acquire all possible information, so they need to think about

what type of information is the most important and what they should choose to optimally

think about.

Firstly, the model developed in the literature assumes diminishing marginal utility in

consumption, which is also a proper assumption in the case of medical rationing. Here, a

group of people who share similar features is viewed as a product in consumption, so the

entire population is divided into multiple groups. Two reasons may explain why there is a

declining utility. To begin with, as more medical units are distributed to a certain group of

people, people in other groups are more likely to cheat and pretend to be in the preferable

group because the distribution is unbalanced, which is similar to the case that has been

proven in Section 4.1. The misreporting may harm the fairness of the distribution which

is not what policymakers want to see. Another reason is that when a lot of resources are
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allocated to a certain group, fewer resources are left for the rest of the population, which

violates the preference for fairness of the society and affects the reflection of other ethical

principles. Therefore, the marginal utility of policymakers decreases as more units are

allocated to a certain group of people. When the number of medical units exceeds the

number of people in a group, the utility of policymakers will start to decrease.

Secondly, the reserve system classifies patients into reserve categories based on ethical

values, and an individual is a better substitute for other individuals in its category than

for individuals in a different reserve category. In the reserve system, each reserve category

follows its own priority order, so individuals in the same reserve category share more

similar features and are more like substitutes than people in other categories. Moreover,

with the goal of representing certain ethical values in allocation results, policymakers may

treat patients in the same reserve category as substitutes because they reflect the same

set of ethical principles.

Thirdly, the attention cost for a planner is expected to be sufficiently high in an emergency

situation such as the COVID-19 pandemic because policymakers need to make quick

responses with limited information. The cognitive ability of an individual may also be

restricted, which makes it nearly impossible to make optimal choices to maximize one’s

utility.

Since the main conditions have been satisfied as discussed above, it is plausible to apply

proposition 3 of Kőszegi and Matějka’s paper to the reserve system in health care rationing.

Hence, the optimal information acquisition strategy for a policymaker is distributing a

fixed amount of medical units to each category. When making budgets, a policymaker

can leave his or her plans incomplete and can make decisions separately for different

categories. This strategy allows the policymaker to preserve most of his or her expected

utility when it is impossible to consider all choices.

In addition, corollary 1 derived from proposition 3 is also applicable, which states that

(1) when there are shocks towards a certain category, the budgets for other categories are

independent of the shock and will not be affected. (2) The shock will not change the total

allocation for that category but may only change the relative allocation levels of different
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groups of patients within that category(Kőszegi and Matějka 2020, 15). These statements

essentially mean that the priority orders for different categories are independent of each

other. When the utility of allocating medical units to certain groups of patients changes,

policymakers adjust the priority orders in each category.

Therefore, the mechanism of the reserve system exactly matches with this optimal in-

formation acquisition strategy introduced in the paper by Kőszegi and Matějka, so it

simplifies the decision-making process for an individual policymaker in an optimal way by

leading them to make mental budgets.

The Priority System:

By contrast, for the priority system, policymakers usually need to figure out a priority

point system to determine the priority order of each patient. This process requires the

policymakers to consider all the ethical values at the same time. Although the expected

utility for a policymaker can be maximized when there is enough time to figure out the

exact priority order, the thinking process is too complex and is nearly impossible especially

in an emergency. Therefore, policymakers may find it difficult to make their own decisions

even before the negotiation when the problem becomes even more sophisticated.

In terms of the priority system, there are situations when the policymakers may make

budget accounts unconsciously. For example, when they give recommendations for the

COVID-19 vaccine allocation(Dooling 2021). In this example, there is a severe shortage

of vaccine supplies at the early stage of the distribution, and planners only need to think

about the groups of people with the highest priorities. On December 1st, 2020, ACIP

recommended allocating vaccines to the health care personnel and long-term care facility

residents first without specifying the priority orders for the rest of the population. ACIP

updated its recommendation On December 20th, 2020 and introduced the second and

third tier.

This may be taken as an extreme case of proposition 3 from Kőszegi and Matějka in which

the attention cost is extremely high, there are only two mental budgets for two categories,

and the agent processes little information. Essentially, the advisory committee members

sacrifice more utility in seek of more reduction in attention cost.
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In the individual decision-making process, the reserve system simulates the budget ac-

counting process thus simplifying the complexity of thinking for policymakers, which is one

of its advantages over the general priority system.

5.2 Negotiation

After each member of the advisory committee forms their own decisions, they need to

negotiate so as to reach an agreement in the final recommendation for the rationing guide-

lines. During this phase, they should also take into consideration the opinions of the public.

In recommending the allocation for COVID-19 vaccines, the CDC does conduct surveys to

get general opinions of different population groups(Dooling 2021)6. Since different people

have different decisions or criteria, the optimal strategy would be the one that compromises

all possible considerations. In addition, since there can be a lot of criteria, it is possible that

people holding completely opposite views.

Compared with the priority system, the reserve system is more flexible and helps to

implement a compromise in the negotiating process. This claim has been discussed in a pa-

per published recently(Sönmez et al. 2020). The paper demonstrates this idea by providing

the example of prioritizing essential personnel in the allocation of scarce therapeutic remde-

sivir. In their example, if the essential personnel is not prioritized, courses of remdesivir are

allocated proportionally by the patient types in the population. If the essential personnel

is prioritized by the priority system, all the essential personnel receive treatment but there

are not many resources left for the rest of the population. Policy-makers may be confined

to these extreme options, and those opposing the idea of giving prioritization to essential

personnel would not be willing to compromise.

The reserve system permits middle options by allowing policymakers to specify the

reserve categories, the criteria for allocation in each category, the number of medical resources

assigned to each category, and the processing order of the categories. In this way, the

6. Details can be found on the website: https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/
covid-19/evidence-table-phase-1b-1c.html

https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19/evidence-table-phase-1b-1c.html
https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19/evidence-table-phase-1b-1c.html
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reserve system offers wider choices for policy-makers thus promoting the achievement of the

agreement(Sönmez et al. 2020, 2-3).

6 Conclusion

This paper compares the reserve system and the priority system on a static basis with

respect to ethical value representation, cheating mitigation, and decision-making simplifica-

tion. The underlying mechanisms of the reserve system allow planners to prevent deliberate

information fabrication by allocating medical resources proportionally to reserve categories

based on the corresponding eligible population size, while this strategy is costly. By contrast,

the mechanisms of the priority system encourage cheating, but the problem can be solved

through the incorporation of supervision and punishment, which also has a cost but pro-

vides a more flexible solution for decision-makers. Moreover, by mapping medical rationing

to multi-product consumption and applying relevant theories, I conclude that the reserve

system relieves the sophisticated thinking process of an individual decision-maker through

mental budgets. With its promotion of compromise in negotiation, the reserve system shows

its advantage in decision-making simplification.

These results suggest that the reserve system and the priority system have strengths and

weaknesses. In practice, decision-makers need to consider the specific context and the needs

in selecting allocation systems for healthcare rationing. Decision-makers can also consider

combining the two allocation systems to give full play to the advantages of both systems.

My current work has many limitations which inspire further research. Firstly, my analy-

sis of the reserve system in Section 4.1 assumes only two reserve categories. A more rigorous

argument about cheating mitigation can be developed by allowing more reserve categories.

Secondly, Theorem 4 still requires advanced mathematical and computational techniques to

study the uniqueness and the comparative statics of the Nash equilibrium so that the ef-

fects of punishment on cheating reduction can be better measured. Thirdly, researchers can

consider developing game-theoretic models of bargaining to study the negotiating process

in recommending medical rationing guidelines, which should provide more insights from the

mathematical perspective.
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